A posteriori error estimators and adaptivity for finite element approximation of the non-homogeneous Dirichlet problem

被引:13
作者
Ainsworth, M
Kelly, DW
机构
[1] Univ Strathclyde, Dept Math, Glasgow G1 1XH, Lanark, Scotland
[2] Univ New S Wales, Sch Mech & Mfg Engn, Sydney, NSW 2052, Australia
基金
英国工程与自然科学研究理事会;
关键词
finite element analysis; non-homogeneous Dirichlet problem; a posteriori error estimation; adaptive refinement algorithm;
D O I
10.1023/A:1014240508621
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Techniques are developed for a posteriori error analysis of the non-homogeneous Dirichlet problem for the Laplacian giving computable error bounds for the error measured in the energy norm. The techniques are based on the equilibrated residual method that has proved to be reliable and accurate for the treatment of problems with homogeneous Dirichlet data. It is shown how the equilibrated residual method must be modified to include the practically important case of non-homogeneous Dirichlet data. Explicit and implicit a posteriori error estimators are derived and shown to be efficient and reliable. Numerical examples are provided illustrating the theory.
引用
收藏
页码:3 / 23
页数:21
相关论文
共 7 条
[1]   Reliable and robust a posteriori error estimation for singularly perturbed reaction-diffusion problems [J].
Ainsworth, M ;
Babuska, I .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1999, 36 (02) :331-353
[2]   The influence and selection of subspaces for a posteriori error estimators [J].
Ainsworth, M .
NUMERISCHE MATHEMATIK, 1996, 73 (04) :399-418
[3]  
[Anonymous], POSTERIORI ERROR EST
[4]  
CIARLET P. G., 1978, The Finite Element Method for Elliptic Problems
[5]   A convergent adaptive algorithm for Poisson's equation [J].
Dorfler, W .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1996, 33 (03) :1106-1124
[6]   ON THE ASYMPTOTIC EXACTNESS OF BANK-WEISER ESTIMATOR [J].
DURAN, R ;
RODRIGUEZ, R .
NUMERISCHE MATHEMATIK, 1992, 62 (03) :297-303
[7]  
Verfurth R., 1996, A review of a posteriori error estimation and adaptive-mesh-refinement techniques