Microbial oil and biodiesel production in an integrated sugarcane biorefinery: Techno-economic and life cycle assessment

被引:21
作者
Longati, Andreza Aparecida [1 ]
Campani, Gilson [2 ]
Furlan, Felipe Fernando [3 ]
Giordano, Roberto de Campos [3 ]
Miranda, Everson Alves [1 ]
机构
[1] Univ Estadual Campinas, Sch Chem Engn, Dept Mat & Bioproc Engn, BR-13083852 Campinas, Brazil
[2] Univ Fed Lavras, Dept Engn, BR-37200900 Lavras, Brazil
[3] Univ Fed Sao Carlos, Chem Engn Grad Program, BR-13565905 Sao Carlos, Brazil
基金
巴西圣保罗研究基金会;
关键词
Bioethanol; Biodiesel; Microbial oil; Rhodotorula toruloides; Techno-economic analysis; Life cycle analysis; ETHANOL; VINASSE; BIOMASS; DESIGN; ENERGY;
D O I
10.1016/j.jclepro.2022.134487
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Biodiesel and bioethanol play an important role as renewable liquid fuels. Bagasse, a by-product from the bioethanol industry, can generate a "sugarcane bagasse hemicellulose hydrolysate" (SCBH) that contains fermentable sugars, mainly xylose. Oleaginous yeasts (eg., Rhodotorula toruloides) can grow in SCBH, producing microbial oil (MO), a source of triacylglycerol for biodiesel production. The integration of bioethanol and biodiesel (from MO) production may be a promising approach in order to exploit synergies between bioethanol and biodiesel processes within a biorefinery. This integration may improve the economic and environmental performance of both processes. This work presents the techno-economic-environmental analysis of the integrated production of first-generation bioethanol, bioelectricity, and biodiesel in a Brazilian sugarcane biorefinery, where MO from the yeast R. toruloides feeds the biodiesel unit. The biorefinery, processing 4.0 million t of sugarcane per harvest, produces 71.7 m3/h of bioethanol, 2.55 m3/h of biodiesel (that can replace 75.6% of the diesel demand in the field), and 86.3 MW of surplus bioelectricity. A life cycle assessment shows that the integrated biorefinery had a lower environmental impact than the first-generation bioethanol plant. The integrated process exhibits a positive economic performance (net present value of approx. 110 million of dollars and internal rate of return of about 14.5% per year, higher than the minimum acceptable rate of return, assumed as 11% per year), indicating that this is a feasible industrial option. Sensitivity analysis shows that R&D should mainly focus on the MO bioreactor operation.
引用
收藏
页数:11
相关论文
共 52 条
[31]   Waste biorefineries: Enabling circular economies in developing countries [J].
Nizami, A. S. ;
Rehan, M. ;
Waqas, M. ;
Naqvi, M. ;
Ouda, O. K. M. ;
Shahzad, K. ;
Miandad, R. ;
Khan, M. Z. ;
Syamsiro, M. ;
Ismail, I. M. I. ;
Pant, Deepak .
BIORESOURCE TECHNOLOGY, 2017, 241 :1101-1117
[32]   Production Strategies and Applications of Microbial Single Cell Oils [J].
Ochsenreitheri, Katrin ;
Glueck, Claudia ;
Stressler, Tmo ;
Fischer, Lutz ;
Syldatk, Christoph .
FRONTIERS IN MICROBIOLOGY, 2016, 7
[33]   A review of global current scenario of biodiesel adoption and combustion in vehicular diesel engines [J].
Ogunkunle, Oyetola ;
Ahmed, Noor A. .
ENERGY REPORTS, 2019, 5 :1560-1579
[34]   Recent advances in biodiesel production from agricultural products and microalgae using ionic liquids: Opportunities and challenges [J].
Ong, Hwai Chyuan ;
Tiong, Yong Wei ;
Goh, Brandon Han Hoe ;
Gan, Yong Yang ;
Mofijur, M. ;
Fattah, I. M. Rizwanul ;
Chong, Cheng Tung ;
Alam, Md Asraful ;
Lee, Hwei Voon ;
Silitonga, A. S. ;
Mahlia, T. M. I. .
ENERGY CONVERSION AND MANAGEMENT, 2021, 228
[35]   Growing Algae for Biodiesel on Direct Sunlight or Sugars: A Comparative Life Cycle Assessment [J].
Orfield, Nolan D. ;
Levine, Robert B. ;
Keoleian, Gregory A. ;
Miller, Shelie A. ;
Savage, Phillip E. .
ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2015, 3 (03) :386-395
[36]   Integrated sugarcane farming and sugar milling with selective fermentation: A simulation-based approach [J].
Ouchida, Kotaro ;
Fukushima, Yasuhiro ;
Ohara, Satoshi ;
Sugimoto, Akira ;
Hattori, Taiichiro ;
Terajima, Yoshifumi ;
Okubo, Tatsuya ;
Kikuchi, Yasunori .
JOURNAL OF CLEANER PRODUCTION, 2019, 236
[37]  
Peters M. S., 2004, PLANT DESIGN EC CHEM
[38]  
Pinheiro M.J., 2020, BIORXIV, DOI [10.1101/2020.05.28.121012, DOI 10.1101/2020.05.28.121012]
[39]   Replacing hexane by ethanol for soybean oil extraction: Modeling, simulation, and techno-economic-environmental analysis [J].
Potrich, Erich ;
Miyoshi, Simone C. ;
Machado, Paula F. S. ;
Furlan, Felipe F. ;
Ribeiro, Marcelo P. A. ;
Tardioli, Paulo W. ;
Giordano, Raquel L. C. ;
Cruz, Antonio J. G. ;
Giordano, Roberto C. .
JOURNAL OF CLEANER PRODUCTION, 2020, 244
[40]   Comparative techno-economic analysis of biofuel production through gasification, thermal liquefaction and pyrolysis of sugarcane bagasse [J].
Ramirez, Jerome A. ;
Rainey, Thomas J. .
JOURNAL OF CLEANER PRODUCTION, 2019, 229 :513-527