Microbial oil and biodiesel production in an integrated sugarcane biorefinery: Techno-economic and life cycle assessment

被引:21
作者
Longati, Andreza Aparecida [1 ]
Campani, Gilson [2 ]
Furlan, Felipe Fernando [3 ]
Giordano, Roberto de Campos [3 ]
Miranda, Everson Alves [1 ]
机构
[1] Univ Estadual Campinas, Sch Chem Engn, Dept Mat & Bioproc Engn, BR-13083852 Campinas, Brazil
[2] Univ Fed Lavras, Dept Engn, BR-37200900 Lavras, Brazil
[3] Univ Fed Sao Carlos, Chem Engn Grad Program, BR-13565905 Sao Carlos, Brazil
基金
巴西圣保罗研究基金会;
关键词
Bioethanol; Biodiesel; Microbial oil; Rhodotorula toruloides; Techno-economic analysis; Life cycle analysis; ETHANOL; VINASSE; BIOMASS; DESIGN; ENERGY;
D O I
10.1016/j.jclepro.2022.134487
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Biodiesel and bioethanol play an important role as renewable liquid fuels. Bagasse, a by-product from the bioethanol industry, can generate a "sugarcane bagasse hemicellulose hydrolysate" (SCBH) that contains fermentable sugars, mainly xylose. Oleaginous yeasts (eg., Rhodotorula toruloides) can grow in SCBH, producing microbial oil (MO), a source of triacylglycerol for biodiesel production. The integration of bioethanol and biodiesel (from MO) production may be a promising approach in order to exploit synergies between bioethanol and biodiesel processes within a biorefinery. This integration may improve the economic and environmental performance of both processes. This work presents the techno-economic-environmental analysis of the integrated production of first-generation bioethanol, bioelectricity, and biodiesel in a Brazilian sugarcane biorefinery, where MO from the yeast R. toruloides feeds the biodiesel unit. The biorefinery, processing 4.0 million t of sugarcane per harvest, produces 71.7 m3/h of bioethanol, 2.55 m3/h of biodiesel (that can replace 75.6% of the diesel demand in the field), and 86.3 MW of surplus bioelectricity. A life cycle assessment shows that the integrated biorefinery had a lower environmental impact than the first-generation bioethanol plant. The integrated process exhibits a positive economic performance (net present value of approx. 110 million of dollars and internal rate of return of about 14.5% per year, higher than the minimum acceptable rate of return, assumed as 11% per year), indicating that this is a feasible industrial option. Sensitivity analysis shows that R&D should mainly focus on the MO bioreactor operation.
引用
收藏
页数:11
相关论文
共 52 条
[11]   Integrating pinch analysis and process simulation within equation-oriented simulators [J].
Elias, Andrew Milli ;
Giordano, Roberto de Campos ;
Secchi, Argimiro Resende ;
Furlan, Felipe Fernando .
COMPUTERS & CHEMICAL ENGINEERING, 2019, 130
[12]   Seasonal characterization of sugarcane vinasse: Assessing environmental impacts from fertirrigation and the bioenergy recovery potential through biodigestion [J].
Fuess, Lucas Tadeu ;
Garcia, Marcelo Loureiro ;
Zaiat, Marcelo .
SCIENCE OF THE TOTAL ENVIRONMENT, 2018, 634 :29-40
[13]   Bioelectricity versus bioethanol from sugarcane bagasse: is it worth being flexible? [J].
Furlan, Felipe F. ;
Tonon Filho, Renato ;
Pinto, Fabio H. P. B. ;
Costa, Caliane B. B. ;
Cruz, Antonio J. G. ;
Giordano, Raquel L. C. ;
Giordano, Roberto C. .
BIOTECHNOLOGY FOR BIOFUELS, 2013, 6
[14]   A simple approach to improve the robustness of equation-oriented simulators: Multilinear look-up table interpolators [J].
Furlan, Felipe Fernando ;
de Andrade Lino, Anderson Rodrigo ;
Matugi, Karina ;
Goncalves Cruz, Antonio Jose ;
Secchi, Argimiro Resende ;
Giordano, Roberto de Campos .
COMPUTERS & CHEMICAL ENGINEERING, 2016, 86 :1-4
[15]  
Guinee J.B., 2002, Handbook on Life Cycle Assessment. Operational Guide to the ISO Standards. I: Lca in Perspective. Iia: Guide. Iib: Operational Annex. Iii: Scientific Background, P692
[16]  
Hecht J.P., 2008, PERRYS CHEM ENGINEER, V12, P12
[17]  
Humbird D., 2011, RENEW ENERG, V303, P147, DOI DOI 10.2172/1013269
[18]   Techno-economic analysis and climate change impacts of sugarcane biorefineries considering different time horizons [J].
Junqueira, Tassia L. ;
Chagas, Mateus F. ;
Gouveia, Vera L. R. ;
Rezende, Mylene C. A. F. ;
Watanabe, Marcos D. B. ;
Jesus, Charles D. F. ;
Cavalett, Otavio ;
Milanez, Artur Y. ;
Bonomi, Antonio .
BIOTECHNOLOGY FOR BIOFUELS, 2017, 10
[19]   Influence of ethanol biodiesel blends on a diesel engine's efficiency and exhaust emission characteristics [J].
Kanokkhanarat, Phobkrit ;
Karin, Preechar ;
Depaiwa, Nattawoot ;
Wongpattharaworakul, Veerayut ;
Srisurangkul, Chadchai ;
Yamakita, Masaki .
MATERIALS TODAY-PROCEEDINGS, 2022, 66 :2862-2867
[20]   Greenhouse gas performance of biochemical biodiesel production from straw: soil organic carbon changes and time-dependent climate impact [J].
Karlsson, Hanna ;
Ahlgren, Serina ;
Sandgren, Mats ;
Passoth, Volkmar ;
Wallberg, Ola ;
Hansson, Per-Anders .
BIOTECHNOLOGY FOR BIOFUELS, 2017, 10