Encapsulating SnS2 nanosheets into hollow carbon sphere: A yolk-shell SnS2@C composite with enhanced sodium storage performance

被引:51
作者
Li, Xun [1 ,2 ]
Zhao, Yi [1 ]
Yao, Qianqian [1 ,2 ]
Guan, Lunhui [1 ]
机构
[1] Chinese Acad Sci, Fujian Inst Res Struct Matter, CAS Key Lab Design & Assembly Funct Nanostruct, Fujian Key Lab Nanomat, Fuzhou 350108, Fujian, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
Yolk-shell structure; SnS2; nanosheets; Carbon sphere; Anode material; Sodium-ion batteries; REDUCED GRAPHENE OXIDE; ION BATTERY ANODE; LAYERED SNS2; POROUS SNO2; CYCLE LIFE; SHEETS; NANOCRYSTALS; STABILITY; NANOTUBES; UPDATE;
D O I
10.1016/j.electacta.2018.03.080
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
In this study, a yolk-shell structured SnS2@C composite is rationally synthesized through a sulfuration treatment of hollow SnO2@C composite. The unique structure with SnS2 nanosheets (a thickness of 15 nm) encapsulated within hollow carbon spheres (similar to 400 nm) is confirmed through SEM, TEM, XRD and XPS characterizations. As an anode material for sodium-ion batteries, as-synthesized SnS2@C composite shows superior sodium storage performance. It delivers good cycling stability with a capacity of 690 mA h g(-1) sustained after 100 cycles at 0.1 A g(-1). Even at a high rate of 10 A g(-1), an impressive rate capability of 310mA h g(-1) is still obtained. The excellent performance of this SnS2@C composite could be attributed to its unique architecture to provide good electrical conductivity, shorten the diffusion path, tolerate the volume fluctuation, prevent the aggregation, and enhance the structure stability during cycles. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1 / 8
页数:8
相关论文
共 39 条
[1]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[2]   Pseudocapacitive oxide materials for high-rate electrochemical energy storage [J].
Augustyn, Veronica ;
Simon, Patrice ;
Dunn, Bruce .
ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (05) :1597-1614
[3]   A sodium-ion cell based on the fluorophosphate compound NaVPO4F [J].
Barker, J ;
Saidi, MY ;
Swoyer, JL .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2003, 6 (01) :A1-A4
[4]  
Brezesinski T, 2010, NAT MATER, V9, P146, DOI [10.1038/NMAT2612, 10.1038/nmat2612]
[5]   Promising Dual-Doped Graphene Aerogel/SnS2 Nanocrystal Building High Performance Sodium Ion Batteries [J].
Fan, Linlin ;
Li, Xifei ;
Song, Xiaosheng ;
Hu, Nana ;
Xiong, Dongbin ;
Koo, Alicia ;
Sun, Xueliang .
ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (03) :2637-2648
[6]   Advances and Challenges in Metal Sulfides/Selenides for Next-Generation Rechargeable Sodium-Ion Batteries [J].
Hu, Zhe ;
Liu, Qiannan ;
Chou, Shu-Lei ;
Dou, Shi-Xue .
ADVANCED MATERIALS, 2017, 29 (48)
[7]   Tunable Pseudocapacitance in 3D TiO2-δ Nanomembranes Enabling Superior Lithium Storage Performance [J].
Huang, Shaozhuan ;
Zhang, Lin ;
Lu, Xueyi ;
Liu, Lifeng ;
Liu, Lixian ;
Sun, Xiaolei ;
Yin, Yin ;
Oswald, Steffen ;
Zou, Zhaoyong ;
Ding, Fei ;
Schmidt, Oliver G. .
ACS NANO, 2017, 11 (01) :821-830
[8]   In situ assembly of graphene sheets-supported SnS2 nanoplates into 3D macroporous aerogels for high-performance lithium ion batteries [J].
Jiang, Xin ;
Yang, Xiaoling ;
Zhu, Yihua ;
Shen, Jianhua ;
Fan, Kaicai ;
Li, Chunzhong .
JOURNAL OF POWER SOURCES, 2013, 237 :178-186
[9]   Ultrasmall SnS2 nanoparticles anchored on well-distributed nitrogen-doped graphene sheets for Li-ion and Na-ion batteries [J].
Jiang, Yong ;
Feng, Yazhi ;
Xi, Baojuan ;
Kai, Shuangshuang ;
Mi, Kan ;
Feng, Jinkui ;
Zhang, Junhao ;
Xiong, Shenglin .
JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (27) :10719-10726
[10]   Enhancing the cycling stability of Na-ion batteries by bonding SnS2 ultrafine nanocrystals on amino-functionalized graphene hybrid nanosheets [J].
Jiang, Yong ;
Wei, Min ;
Feng, Jinkui ;
Ma, Yuchen ;
Xiong, Shenglin .
ENERGY & ENVIRONMENTAL SCIENCE, 2016, 9 (04) :1430-1438