Computational Modeling of Realistic Cell Membranes

被引:513
作者
Marrink, Siewert J. [1 ,2 ]
Corradi, Valentina [3 ,4 ]
Souza, Paulo C. T. [1 ,2 ]
Ingolfsson, Helgi I. [5 ]
Tieleman, D. Peter [3 ,4 ]
Sansom, Mark S. P. [6 ]
机构
[1] Univ Groningen, Groningen Biomol Sci & Biotechnol Inst, Nijenborgh 7, NL-9747 AG Groningen, Netherlands
[2] Univ Groningen, Zernike Inst Adv Mat, Nijenborgh 7, NL-9747 AG Groningen, Netherlands
[3] Univ Calgary, Ctr Mol Simulat, 2500 Univ Dr NW, Calgary, AB T2N 1N4, Canada
[4] Univ Calgary, Dept Biol Sci, 2500 Univ Dr NW, Calgary, AB T2N 1N4, Canada
[5] Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Biosci & Biotechnol Div, 7000 East Ave, Livermore, CA 94550 USA
[6] Univ Oxford, Dept Biochem, South Parks Rd, Oxford OX1 3QU, England
基金
英国生物技术与生命科学研究理事会; 加拿大自然科学与工程研究理事会; 英国惠康基金; 加拿大健康研究院; 英国工程与自然科学研究理事会;
关键词
MOLECULAR-DYNAMICS SIMULATIONS; GRAINED FORCE-FIELD; BACTERIAL OUTER-MEMBRANE; PROTEIN-COUPLED RECEPTORS; CHOLESTEROL INTERACTION SITES; ADENINE-NUCLEOTIDE TRANSLOCASE; HELIX-HELIX INTERACTIONS; LIPID-BINDING SITES; SMALL-ANGLE NEUTRON; PHASE-SEPARATION;
D O I
10.1021/acs.chemrev.8b00460
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Cell membranes contain a large variety of lipid types and are crowded with proteins, endowing them with the plasticity needed to fulfill their key roles in cell functioning. The compositional complexity of cellular membranes gives rise to a heterogeneous lateral organization, which is still poorly understood. Computational models, in particular molecular dynamics simulations and related techniques, have provided important insight into the organizational principles of cell membranes over the past decades. Now, we are witnessing a transition from simulations of simpler membrane models to multicomponent systems, culminating in realistic models of an increasing variety of cell types and organelles. Here, we review the state of the art in the field of realistic membrane simulations and discuss the current limitations and challenges ahead.
引用
收藏
页码:6184 / 6226
页数:43
相关论文
共 703 条
[31]   Polarizable force fields for molecular dynamics simulations of biomolecules [J].
Baker, Christopher M. .
WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE, 2015, 5 (02) :241-254
[32]   Role of the Native Outer-Membrane Environment on the Transporter BtuB [J].
Balusek, Curtis ;
Gumbart, James C. .
BIOPHYSICAL JOURNAL, 2016, 111 (07) :1409-1417
[33]   Curvature-Induced Sorting of Lipids in Plasma Membrane Tethers [J].
Baoukina, Svetlana ;
Ingolfsson, Helgi I. ;
Marrink, Siewertj ;
Tieleman, D. Peter .
ADVANCED THEORY AND SIMULATIONS, 2018, 1 (08)
[34]   Composition Fluctuations in Lipid Bilayers [J].
Baoukina, Svetlana ;
Rozmanov, Dmitri ;
Tieleman, D. Peter .
BIOPHYSICAL JOURNAL, 2017, 113 (12) :2750-2761
[35]   Computer simulations of the phase separation in model membranes [J].
Baoukina, Svetlana ;
Mendez-Villuendas, Eduardo ;
Bennett, W. F. Drew ;
Tieleman, D. Peter .
FARADAY DISCUSSIONS, 2013, 161 :63-75
[36]   Direct Simulation of Protein-Mediated Vesicle Fusion: Lung Surfactant Protein B [J].
Baoukina, Svetlana ;
Tieleman, D. Peter .
BIOPHYSICAL JOURNAL, 2010, 99 (07) :2134-2142
[37]   Molecular Dynamics Simulations of Kir2.2 Interactions with an Ensemble of Cholesterol Molecules [J].
Barbera, Nicolas ;
Ayee, Manuela A. A. ;
Akpa, Belinda S. ;
Levitan, Irena .
BIOPHYSICAL JOURNAL, 2018, 115 (07) :1264-1280
[38]   Hydrophobic Compounds Reshape Membrane Domains [J].
Barnoud, Jonathan ;
Rossi, Giulia ;
Marrink, Siewert J. ;
Monticelli, Luca .
PLOS COMPUTATIONAL BIOLOGY, 2014, 10 (10)
[39]   Modeling DMPC lipid membranes with SIRAH force-field [J].
Barrera, Exequiel E. ;
Frigini, Ezequiel N. ;
Porasso, Rodolfo D. ;
Pantano, Sergio .
JOURNAL OF MOLECULAR MODELING, 2017, 23 (09)
[40]  
Bartelds R, 2017, AIMS BIOPHYS, V4, P528, DOI 10.3934/biophy.2017.4.528