High latent heat storage and high thermal conductive phase change materials using exfoliated graphite nanoplatelets

被引:355
作者
Kim, Sumin [1 ]
Drza, Lawrence T. [2 ]
机构
[1] Soongsil Univ, Coll Engn, Dept Architecture, Seoul 156743, South Korea
[2] Michigan State Univ, Coll Engn, Ctr Composite Mat & Struct, E Lansing, MI 48824 USA
关键词
Exfoliated graphite nanoplatelets (xGnP); Phase change material (PCM); Paraffin wax; Latent heat storage; Thermal conductivity; ENERGY-STORAGE; EXPANDED GRAPHITE; STEARIC-ACID; ENHANCEMENT; COMPOSITES; H2SO4-GICS; SYSTEMS;
D O I
10.1016/j.solmat.2008.09.010
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Using exfoliated graphite nanoplatelets (xGnP), paraffin/xGnP composite phase change materials (PCMs) were prepared by the stirring of xGnP in liquid paraffin for high electric conductivity, thermal conductivity and latent heat storage. xGnP of 1, 2, 3, 5 and 7wt% was added to pure paraffin at 75 C. Scanning electron microscopy (SEM) morphology showed uniform dispersion of xGnP in the paraffin wax. Good dispersion of xGnP in paraffin/xGnP composite PCMs led to high electric conductivity. The percolation threshold of paraffin/xGnP composite PCMs was between 1 and 2wt% in resistivity measurement. The thermal conductivity of paraffin/xGnP composite PCMs was increased as xGnP loading contents. Also, reproducibility of paraffin/xGnP composite PCMs as continuous PCMs was manifested in results of electric and thermal conductivity. Paraffin/xGnP composite PCMs showed two peaks in the heating curve by differential scanning calorimeter (DSC) measurement. The first phase change peak at around 35 degrees C is lower and corresponds to the solid-solid phase transition of the paraffin, and the second peak is high at around 55 degrees C, corresponding to the solid-liquid phase change. The latent heat of paraffin/xGnP composite PCMs did not decrease as loading xGnP contents to paraffin. xGnP can be considered as an effective heat-diffusion promoter to improve thermal conductivity of PCMs without reducing its latent heat storage capacity in paraffin wax. (c) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:136 / 142
页数:7
相关论文
共 50 条
  • [21] Thermal stability of phase change materials used in latent heat energy storage systems: A review
    Rathod, Manish K.
    Banerjee, Jyotirmay
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2013, 18 : 246 - 258
  • [22] Thermal conductivity and latent heat thermal energy storage characteristics of paraffin/expanded graphite composite as phase change material
    Sari, Ahmet
    Karaipekli, Ali
    APPLIED THERMAL ENGINEERING, 2007, 27 (8-9) : 1271 - 1277
  • [23] Stearic acid/expanded graphite composite phase change material with high thermal conductivity for thermal energy storage
    Ao, Ci
    Yan, Suying
    Zhao, Sitong
    Hu, Wenqi
    Zhao, Long
    Wu, Yuting
    ENERGY REPORTS, 2022, 8 : 4834 - 4843
  • [24] Elaboration of conductive thermal storage composites made of phase change materials and graphite for solar plant
    Pincemin, S.
    Py, X.
    Olives, R.
    Christ, M.
    Oettinger, O.
    JOURNAL OF SOLAR ENERGY ENGINEERING-TRANSACTIONS OF THE ASME, 2008, 130 (01):
  • [25] HEAT TRANSFER ENHANCEMENT OF PHASE CHANGE MATERIALS (PCMs) IN LOW AND HIGH TEMPERATURE THERMAL STORAGE BY USING POROUS MATERIALS
    Zhao, C. Y.
    Zhou, D.
    Wu, Z. G.
    PROCEEDINGS OF THE ASME INTERNATIONAL HEAT TRANSFER CONFERENCE - 2010, VOL 7: NATURAL CONVECTION, NATURAL/MIXED CONVECTION, NUCLEAR, PHASE CHANGE MATERIALS, SOLAR, 2010, : 435 - 441
  • [26] Thermal Peak Management Using Organic Phase Change Materials for Latent Heat Storage in Electronic Applications
    Maxa, Jacob
    Novikov, Andrej
    Nowottnick, Mathias
    MATERIALS, 2018, 11 (01):
  • [27] Aluminum and silicon based phase change materials for high capacity thermal energy storage
    Wang, Zhengyun
    Wang, Hui
    Li, Xiaobo
    Wang, Dezhi
    Zhang, Qinyong
    Chen, Gang
    Ren, Zhifeng
    APPLIED THERMAL ENGINEERING, 2015, 89 : 204 - 208
  • [28] Okra functional biomimetic composite phase change materials integrated with high thermal conductivity, remarkable latent heat, and multicycle stability for high temperature thermal energy storage
    Ren, Tianze
    Yao, Haichen
    ENERGY, 2024, 308
  • [29] Assessment of latent heat thermal storage systems operating with multiple phase change materials
    Narasimhan, Lakshmi N.
    JOURNAL OF ENERGY STORAGE, 2019, 23 : 442 - 455
  • [30] Thermal properties of eutectic salts/ceramics/expanded graphite composite phase change materials for high-temperature thermal energy storage
    Ran, Xiaofeng
    Wang, Haoran
    Zhong, Yajuan
    Zhang, Feng
    Lin, Jun
    Zou, Hua
    Dai, Zhimin
    An, Baolin
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2021, 225