High latent heat storage and high thermal conductive phase change materials using exfoliated graphite nanoplatelets

被引:355
作者
Kim, Sumin [1 ]
Drza, Lawrence T. [2 ]
机构
[1] Soongsil Univ, Coll Engn, Dept Architecture, Seoul 156743, South Korea
[2] Michigan State Univ, Coll Engn, Ctr Composite Mat & Struct, E Lansing, MI 48824 USA
关键词
Exfoliated graphite nanoplatelets (xGnP); Phase change material (PCM); Paraffin wax; Latent heat storage; Thermal conductivity; ENERGY-STORAGE; EXPANDED GRAPHITE; STEARIC-ACID; ENHANCEMENT; COMPOSITES; H2SO4-GICS; SYSTEMS;
D O I
10.1016/j.solmat.2008.09.010
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Using exfoliated graphite nanoplatelets (xGnP), paraffin/xGnP composite phase change materials (PCMs) were prepared by the stirring of xGnP in liquid paraffin for high electric conductivity, thermal conductivity and latent heat storage. xGnP of 1, 2, 3, 5 and 7wt% was added to pure paraffin at 75 C. Scanning electron microscopy (SEM) morphology showed uniform dispersion of xGnP in the paraffin wax. Good dispersion of xGnP in paraffin/xGnP composite PCMs led to high electric conductivity. The percolation threshold of paraffin/xGnP composite PCMs was between 1 and 2wt% in resistivity measurement. The thermal conductivity of paraffin/xGnP composite PCMs was increased as xGnP loading contents. Also, reproducibility of paraffin/xGnP composite PCMs as continuous PCMs was manifested in results of electric and thermal conductivity. Paraffin/xGnP composite PCMs showed two peaks in the heating curve by differential scanning calorimeter (DSC) measurement. The first phase change peak at around 35 degrees C is lower and corresponds to the solid-solid phase transition of the paraffin, and the second peak is high at around 55 degrees C, corresponding to the solid-liquid phase change. The latent heat of paraffin/xGnP composite PCMs did not decrease as loading xGnP contents to paraffin. xGnP can be considered as an effective heat-diffusion promoter to improve thermal conductivity of PCMs without reducing its latent heat storage capacity in paraffin wax. (c) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:136 / 142
页数:7
相关论文
共 50 条
  • [1] Investigation of exfoliated graphite nanoplatelets (xGnP) in improving thermal conductivity of paraffin wax-based phase change material
    Xiang, Jinglei
    Drzal, Lawrence T.
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2011, 95 (07) : 1811 - 1818
  • [2] Thermal conductive enhanced phase change composites with high latent-heat for constant temperature thermal management
    Xie, Hongjie
    Zhao, Yunfeng
    Ma, Yuchun
    Wen, Biao
    Zhao, Lijuan
    Han, Bing
    Li, Zhaoqiang
    Deng, Qibo
    Zhang, Kai
    JOURNAL OF ENERGY STORAGE, 2024, 96
  • [3] DYNAMIC THERMAL BEHAVIOUR OF BUILDING USING PHASE CHANGE MATERIALS FOR LATENT HEAT STORAGE
    Selka, Ghouti
    Korti, Abdel Illah Nabil
    Abboudi, Said
    THERMAL SCIENCE, 2015, 19 : S603 - S613
  • [4] Thermal Properties of 1-Tetradecanol/Polyvinyl Butyral Composite Phase Change Materials with Expanded Graphite for Latent Heat Storage
    Wang, Wenze
    Fu, Tingwei
    Fang, Guiyin
    JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2024,
  • [5] Latent heat storage using renewable saturated diesters as phase change materials
    Floros, Michael C.
    Narine, Suresh S.
    ENERGY, 2016, 115 : 924 - 930
  • [6] Ultra-high thermal conductive epoxy-based copper/graphite nanoplatelets materials for heat management application
    Wang, Xiaotong
    Pu, Zhichen
    Yang, Yiming
    Wei, Baojie
    Yang, Shuangqiao
    COMPOSITES SCIENCE AND TECHNOLOGY, 2022, 224
  • [7] Review on heat transfer analysis in thermal energy storage using latent heat storage systems and phase change materials
    Sarbu, Ioan
    Dorca, Alexandru
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2019, 43 (01) : 29 - 64
  • [8] Preparation and thermal properties of palmitic acid/polyaniline/exfoliated graphite nanoplatelets form-stable phase change materials
    Zeng, Ju-Lan
    Zheng, Shuang-Hao
    Yu, Sai-Bo
    Zhu, Fu-Rong
    Gan, Juan
    Zhu, Ling
    Xiao, Zhong-Liang
    Zhu, Xin-Yu
    Zhu, Zhen
    Sun, Li-Xian
    Cao, Zhong
    APPLIED ENERGY, 2014, 115 : 603 - 609
  • [9] Exfoliated graphite/paraffin nanocomposites as phase change materials for thermal energy storage application
    Huang, J.
    Wang, T. Y.
    Wang, C. H.
    Rao, Z. H.
    MATERIALS RESEARCH INNOVATIONS, 2011, 15 (06) : 422 - 427
  • [10] Highly conductive composites made of phase change materials and graphite for thermal storage
    Pincemin, S.
    Olives, R.
    Py, X.
    Christ, M.
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2008, 92 (06) : 603 - 613