Effect of Silver Nanoparticles on Growth of Eukaryotic Green Algae

被引:64
作者
Dash, Anjali [1 ]
Singh, Anand P. [2 ]
Chaudhary, Bansh R. [2 ]
Singh, Sunil K. [1 ]
Dash, Debabrata [1 ]
机构
[1] Banaras Hindu Univ, Inst Med Sci, Dept Biochem, Varanasi 221005, Uttar Pradesh, India
[2] Banaras Hindu Univ, Ctr Adv Study Bot, Varanasi 221005, Uttar Pradesh, India
关键词
Silver nanoparticles; Green algae; Algal growth; Photosynthetic pigment; Nanotoxicity; PSEUDOKIRCHNERIELLA-SUBCAPITATA; ESCHERICHIA-COLI; TOXICITY; BEHAVIOR; PLANTS; ZNO;
D O I
10.1007/BF03353707
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Silver nanoparticles, endowed with powerful antimicrobial property, are the most widely used nanomaterial in consumer products, with associated risk of their easy access to environment and freshwater ecosystems by surface runoff. Although toxic effects of nanosilver on bacterial, fungal and mammalian cells have been documented, its impact on algal growth remains unknown. Pithophora oedogonia and Chara vulgaris are predominant members of photosynthetic eukaryotic algae, which form major component of global aquatic ecosystem. Here we report for the first time that nanosilver has significant adverse effects on growth and morphology of these filamentous green algae in a dose-dependent manner. Exposure of algal thalli to increasing concentrations of silver nanoparticles resulted in progressive depletion in algal chlorophyll content, chromosome instability and mitotic disturbance, associated with morphological malformations in algal filaments. SEM micrographs revealed dramatic alterations in cell wall in nanoparticle-treated algae, characterized with cell wall rupture and degradation in Pithophora. Although these observations underscore severe deleterious effects of nanosilver on aquatic environment, the information can also be exploited as a bioengineering strategy to control unwanted and persistent growth of noxious algal weeds that clog the municipal water supply and water channels and produce fouling of water bodies.
引用
收藏
页码:158 / 165
页数:8
相关论文
共 41 条
  • [1] Comparative eco-toxicity of nanoscale TiO2, SiO2, and ZnO water suspensions
    Adams, Laura K.
    Lyon, Delina Y.
    Alvarez, Pedro J. J.
    [J]. WATER RESEARCH, 2006, 40 (19) : 3527 - 3532
  • [2] COPPER ENZYMES IN ISOLATED CHLOROPLASTS - POLYPHENOLOXIDASE IN BETA-VULGARIS
    ARNON, DI
    [J]. PLANT PHYSIOLOGY, 1949, 24 (01) : 1 - 15
  • [3] Toxicity of nanoparticles of CuO, ZnO and TiO2 to microalgae Pseudokirchneriella subcapitata
    Aruoja, Villem
    Dubourguier, Henri-Charles
    Kasemets, Kaja
    Kahru, Anne
    [J]. SCIENCE OF THE TOTAL ENVIRONMENT, 2009, 407 (04) : 1461 - 1468
  • [4] Anti-proliferative activity of silver nanoparticles
    AshaRani, P. V.
    Hande, M. Prakash
    Valiyaveettil, Suresh
    [J]. BMC CELL BIOLOGY, 2009, 10 : 65
  • [5] Bold Harold C., 1942, BOT REV, V8, P69, DOI 10.1007/BF02879474
  • [6] Effect of Biosynthesized Silver Nanoparticles on Staphylococcus aureus Biofilm Quenching and Prevention of Biofilm Formation
    Chaudhari, Pratik R.
    Masurkar, Shalaka A.
    Shidore, Vrishali B.
    Kamble, Suresh P.
    [J]. NANO-MICRO LETTERS, 2012, 4 (01) : 34 - 39
  • [7] The potential environmental impact of engineered nanomaterials
    Colvin, VL
    [J]. NATURE BIOTECHNOLOGY, 2003, 21 (10) : 1166 - 1170
  • [8] The pore size of non-graminaceous plant cell walls is rapidly decreased by borate ester cross-linking of the pectic polysaccharide rhamnogalacturonan II
    Fleischer, A
    O'Neill, MA
    Ehwald, R
    [J]. PLANT PHYSIOLOGY, 1999, 121 (03) : 829 - 838
  • [9] Comparative toxicity of nanoparticulate ZnO, bulk ZnO, and ZnCl2 to a freshwater microalga (Pseudokirchneriella subcapitata):: The importance of particle solubility
    Franklin, Natasha M.
    Rogers, Nicola J.
    Apte, Simon C.
    Batley, Graeme E.
    Gadd, Gerald E.
    Casey, Philip S.
    [J]. ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2007, 41 (24) : 8484 - 8490
  • [10] Changes in pectin structure during epidermal cell elongation in pea (Pisum sativum) and its implications for cell wall architecture
    Fujino, T
    Itoh, T
    [J]. PLANT AND CELL PHYSIOLOGY, 1998, 39 (12) : 1315 - 1323