AC Magnetic Technique to Measure Specific Absorption Rate of Magnetic Nanoparticles

被引:15
作者
Gudoshnikov, S. A. [1 ,2 ]
Liubimov, B. Y. [1 ]
Sitnov, Y. S. [1 ]
Skomarovsky, V. S. [1 ,2 ]
Usov, N. A. [1 ,2 ]
机构
[1] Russian Acad Sci, Pushkov Inst Terr Magnetism Ionosphere & Radio Wa, IZMIRAN, Troitsk 142190, Moscow Region, Russia
[2] Ltd Magnet & Cryoelect Syst, Troitsk 142190, Moscow Region, Russia
关键词
Superparamagnetic nanoparticles; Specific absorption rate; Inductive measurement; HYPERTHERMIA;
D O I
10.1007/s10948-012-1941-2
中图分类号
O59 [应用物理学];
学科分类号
摘要
The electrodynamic method is applied to determine the specific absorption rate (SAR) of an assembly of superparamagnetic nanoparticles as a function of frequency and magnetic field amplitude. The home made frequency-adjustable electromagnet is used to create a nearly uniform magnetic field in a core gap of a volume 1x3x3 cm(3) in the frequency range f=10-150 kHz and for magnetic field amplitudes up to H (0)=250 Oe. Two oppositely connected pick-up coils are used to record the electromotive force signal (EMF) generated by magnetic nanoparticles. By integrating the EMF signal one can determine the low-frequency hysteresis loops of the assembly and the assembly SAR. Using this method the measurement of SAR has been carried out for magnetite nanoparticles with an average diameter D=25 nm. The electrodynamic method is shown to be capable of measuring a small amount of magnetic nanoparticles, up to 5x10(-5) g, dispersed in a solid matrix. The maximal SAR similar to aEuro parts per thousand 80 W/g has been obtained for the magnetite nanoparticle assembly investigated.
引用
收藏
页码:857 / 860
页数:4
相关论文
共 9 条
[1]   High Resolution System for Nanoparticles Hyperthermia Efficiency Evaluation [J].
Cobos, P. ;
Maicas, M. ;
Sanz, M. ;
Aroca, C. .
IEEE TRANSACTIONS ON MAGNETICS, 2011, 47 (10) :2360-2363
[2]   Measurements of magnetic materials [J].
Fiorillo, Fausto .
METROLOGIA, 2010, 47 (02) :S114-S142
[3]   Hysteresis losses in a dense superparamagnetic nanoparticle assembly [J].
Gudoshnikov, S. A. ;
Liubimov, B. Ya ;
Usov, N. A. .
AIP ADVANCES, 2012, 2 (01)
[4]   Magnetic properties of bacterial magnetosomes as potential diagnostic and therapeutic tools [J].
Hergt, R ;
Hiergeist, R ;
Zeisberger, M ;
Schüler, D ;
Heyen, U ;
Hilger, I ;
Kaiser, WA .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2005, 293 (01) :80-86
[5]   Effects of size distribution on hysteresis losses of magnetic nanoparticles for hyperthermia [J].
Hergt, Rudolf ;
Dutz, Silvio ;
Roeder, Michael .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2008, 20 (38)
[6]   A frequency-adjustable electromagnet for hyperthermia measurements on magnetic nanoparticles [J].
Lacroix, L. -M. ;
Carrey, J. ;
Respaud, M. .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2008, 79 (09)
[7]   Influence of a transverse static magnetic field on the magnetic hyperthermia properties and high-frequency hysteresis loops of ferromagnetic FeCo nanoparticles [J].
Mehdaoui, B. ;
Carrey, J. ;
Stadler, M. ;
Cornejo, A. ;
Nayral, C. ;
Delpech, F. ;
Chaudret, B. ;
Respaud, M. .
APPLIED PHYSICS LETTERS, 2012, 100 (05)
[8]   Optimal Size of Nanoparticles for Magnetic Hyperthermia: A Combined Theoretical and Experimental Study [J].
Mehdaoui, Boubker ;
Meffre, Anca ;
Carrey, Julian ;
Lachaize, Sebastien ;
Lacroix, Lise-Marie ;
Gougeon, Michel ;
Chaudret, Bruno ;
Respaud, Marc .
ADVANCED FUNCTIONAL MATERIALS, 2011, 21 (23) :4573-4581
[9]   Progress in applications of magnetic nanoparticles in biomedicine [J].
Pankhurst, Q. A. ;
Thanh, N. T. K. ;
Jones, S. K. ;
Dobson, J. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2009, 42 (22)