A NEW CHARACTERIZATION OF REGULARIZED BMO SPACES ON NON-HOMOGENEOUS SPACES AND ITS APPLICATIONS

被引:8
|
作者
Hu, Guoen
Meng, Yan [1 ]
Yang, Dachun
机构
[1] Zhengzhou Informat Sci & Technol Inst, Dept Appl Math, Zhengzhou 450002, Peoples R China
基金
中国国家自然科学基金;
关键词
RBMO(mu); Calderon-Zygmund operator; upper doubling measure; geometrically doubling; metric measure space; CALDERON-ZYGMUND OPERATORS; THEOREM; INEQUALITIES; H-1;
D O I
10.5186/aasfm.2013.3809
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let (X, d, mu) be a metric measure space and satisfy the so-called upper doubling condition and the geometrically doubling condition. Under this assumption, in this paper, the authors establish a new characterization of the space RBMO(mu). As applications, the authors prove that the L-P(mu)-boundedness with p is an element of (1, infinity) of the Calderon-Zygmund operator is equivalent to its various endpoint estimates.
引用
收藏
页码:3 / 27
页数:25
相关论文
共 50 条
  • [11] Weighted Morrey spaces on non-homogeneous metric measure spaces
    Yan, Yu
    Chen, Jie
    Lin, Haibo
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 452 (01) : 335 - 350
  • [12] NEW LOCAL T 1 THEOREMS ON NON-HOMOGENEOUS SPACES
    Villarroya, Paco
    PUBLICACIONS MATEMATIQUES, 2024, 68 (02) : 445 - 506
  • [13] Vector valued commutators on non-homogeneous spaces
    Chen, Wengu
    Miao, Changxing
    TAIWANESE JOURNAL OF MATHEMATICS, 2007, 11 (04): : 1127 - 1141
  • [14] The Tb-theorem on non-homogeneous spaces
    Nazarov, F
    Treil, S
    Volberg, A
    ACTA MATHEMATICA, 2003, 190 (02) : 151 - 239
  • [15] New Molecular Characterization of Musielak-Orlicz Hardy Spaces on Spaces of Homogeneous Type and Its Applications
    Xianjie YAN
    Dachun YANG
    Chinese Annals of Mathematics,Series B, 2025, (02) : 201 - 232
  • [16] New Molecular Characterization of Musielak-Orlicz Hardy Spaces on Spaces of Homogeneous Type and Its Applications
    Yan, Xianjie
    Yang, Dachun
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2025, 46 (02) : 201 - 232
  • [17] Development of electromagnetic theory for non-homogeneous spaces
    Liebowitz, B
    PHYSICAL REVIEW, 1943, 64 (9/10): : 294 - 301
  • [18] Bilinear forms on non-homogeneous Sobolev spaces
    Cascante, Carme
    Ortega, Joaquin M.
    FORUM MATHEMATICUM, 2020, 32 (04) : 995 - 1026
  • [19] BMO FUNCTIONS IN SPACES OF HOMOGENEOUS TYPE
    LONG, RL
    YANG, L
    SCIENTIA SINICA SERIES A-MATHEMATICAL PHYSICAL ASTRONOMICAL & TECHNICAL SCIENCES, 1984, 27 (07): : 695 - 708
  • [20] BMO Spaces on Weighted Homogeneous Trees
    Laura Arditti
    Anita Tabacco
    Maria Vallarino
    The Journal of Geometric Analysis, 2021, 31 : 8832 - 8849