Artificial intelligence-derived neurofibrillary tangle burden is associated with antemortem cognitive impairment

被引:22
作者
Marx, Gabriel A. [1 ,2 ]
Koenigsberg, Daniel G. [1 ,2 ]
McKenzie, Andrew T. [1 ,2 ,3 ]
Kauffman, Justin [1 ,2 ]
Hanson, Russell W. [4 ]
Whitney, Kristen [1 ,2 ]
Signaevsky, Maxim [1 ,5 ]
Prastawa, Marcel [1 ,5 ]
Iida, Megan A. [1 ,2 ]
White, Charles L., III [6 ]
Walker, Jamie M. [1 ]
Richardson, Timothy E. [1 ]
Koll, John [1 ,5 ]
Fernandez, Gerardo [1 ,5 ]
Zeineh, Jack [1 ,5 ]
Cordon-Cardo, Carlos [1 ,5 ]
Crary, John F. [1 ,2 ]
Farrell, Kurt [1 ,2 ]
机构
[1] Icahn Sch Med Mt Sinai, Dept Pathol, 1 Gustave Levy Pl, New York, NY 10029 USA
[2] Icahn Sch Med Mt Sinai, Dept Artificial Intelligence & Human Hlth, Neuropathol Brain Bank & Res CoRE,Nash Family Dep, Ronald M Loeb Ctr Alzheimers Dis,Friedman Brain I, 1 Gustave L Levy Pl,Box 1194, New York, NY 10029 USA
[3] Icahn Sch Med Mt Sinai, Dept Psychiat, New York, NY 10029 USA
[4] NYU, McSilver Inst Poverty Policy & Res, New York, NY USA
[5] Icahn Sch Med Mt Sinai, Ctr Computat & Syst Pathol, New York, NY 10029 USA
[6] Univ Texas Southwestern Med Ctr Dallas, Dept Pathol, Dallas, TX 75390 USA
关键词
Tauopathy; Alzheimer's disease; Primary age-related tauopathy; Neurofibrillary tangle; Digital pathology; Convolutional neural network; Deep learning; Computer vision; ALZHEIMERS-DISEASE; PATHOLOGICAL TAU; SENILE PLAQUES; DECLINE; QUANTIFICATION; DIAGNOSIS; DEMENTIA; VALIDITY;
D O I
10.1186/s40478-022-01457-x
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Tauopathies are a category of neurodegenerative diseases characterized by the presence of abnormal tau protein-containing neurofibrillary tangles (NFTs). NFTs are universally observed in aging, occurring with or without the concomitant accumulation of amyloid-beta peptide (A beta) in plaques that typifies Alzheimer disease (AD), the most common tauopathy. Primary age-related tauopathy (PART) is an A beta-independent process that affects the medial temporal lobe in both cognitively normal and impaired subjects. Determinants of symptomology in subjects with PART are poorly understood and require clinicopathologic correlation; however, classical approaches to staging tau pathology have limited quantitative reproducibility. As such, there is a critical need for unbiased methods to quantitatively analyze tau pathology on the histological level. Artificial intelligence (AI)-based convolutional neural networks (CNNs) generate highly accurate and precise computer vision assessments of digitized pathology slides, yielding novel histology metrics at scale. Here, we performed a retrospective autopsy study of a large cohort (n = 706) of human post-mortem brain tissues from normal and cognitively impaired elderly individuals with mild or no A beta plaques (average age of death of 83.1 yr, range 55-110). We utilized a CNN trained to segment NFTs on hippocampus sections immunohistochemically stained with antisera recognizing abnormal hyperphosphorylated tau (p-tau), which yielded metrics of regional NFT counts, NFT positive pixel density, as well as a novel graph-theory based metric measuring the spatial distribution of NFTs. We found that several AI-derived NFT metrics significantly predicted the presence of cognitive impairment in both the hippocampus proper and entorhinal cortex (p < 0.0001). When controlling for age, AI-derived NFT counts still significantly predicted the presence of cognitive impairment (p = 0.04 in the entorhinal cortex; p = 0.04 overall). In contrast, Braak stage did not predict cognitive impairment in either age-adjusted or unadjusted models. These findings support the hypothesis that NFT burden correlates with cognitive impairment in PART. Furthermore, our analysis strongly suggests that AI-derived metrics of tau pathology provide a powerful tool that can deepen our understanding of the role of neurofibrillary degeneration in cognitive impairment.
引用
收藏
页数:12
相关论文
共 60 条
[1]   Staging of neurofibrillary pathology in Alzheimer's disease:: A study of the BrainNet Europe consortium [J].
Alafuzoff, Irina ;
Arzberger, Thomas ;
Al-Sarraj, Safa ;
Bodi, Istvan ;
Bogdanovic, Nenad ;
Braak, Heiko ;
Bugiani, Orso ;
Del-Tredici, Kelly ;
Ferrer, Isidro ;
Gelpi, Ellen ;
Giaccone, Giorgio ;
Graeber, Manuel B. ;
Ince, Paul ;
Kamphorst, Wouter ;
King, Andrew ;
Korkolopoulou, Penelope ;
Kovacs, Gabor G. ;
Larionov, Sergey ;
Meyronet, David ;
Monoranu, Camelia ;
Parchi, Piero ;
Patsouris, Efstratios ;
Roggendorf, Wolfgang ;
Seilhean, Danielle ;
Tagliavini, Fabrizio ;
Stadelmann, Christine ;
Streichenberger, Nathalie ;
Thal, Dietmar R. ;
Wharton, Stephen B. ;
Kretzschmar, Hans .
BRAIN PATHOLOGY, 2008, 18 (04) :484-496
[2]   Characterizing tau deposition in chronic traumatic encephalopathy (CTE): utility of the McKee CTE staging scheme [J].
Alosco, Michael L. ;
Cherry, Jonathan D. ;
Huber, Bertrand Russell ;
Tripodis, Yorghos ;
Baucom, Zachary ;
Kowall, Neil W. ;
Saltiel, Nicole ;
Goldstein, Lee E. ;
Katz, Douglas, I ;
Dwyer, Brigid ;
Daneshvar, Daniel H. ;
Palmisano, Joseph N. ;
Martin, Brett ;
Cantu, Robert C. ;
Stern, Robert A. ;
Alvarez, Victor E. ;
Mez, Jesse ;
Stein, Thor D. ;
McKee, Ann C. .
ACTA NEUROPATHOLOGICA, 2020, 140 (04) :495-512
[3]   Regional distribution and maturation of tau pathology among phenotypic variants of Alzheimer's disease [J].
Arezoumandan, Sanaz ;
Xie, Sharon X. ;
Cousins, Katheryn A. Q. ;
Mechanic-Hamilton, Dawn J. ;
Peterson, Claire S. ;
Huang, Camille Y. ;
Ohm, Daniel T. ;
Ittyerah, Ranjit ;
McMillan, Corey T. ;
Wolk, David A. ;
Yushkevich, Paul ;
Trojanowski, John Q. ;
Lee, Edward B. ;
Grossman, Murray ;
Phillips, Jeffrey S. ;
Irwin, David J. .
ACTA NEUROPATHOLOGICA, 2022, 144 (06) :1103-1116
[4]   Clustering of tau-immunoreactive pathology in chronic traumatic encephalopathy [J].
Armstrong, Richard A. ;
McKee, Ann C. ;
Alvarez, Victor E. ;
Cairns, Nigel J. .
JOURNAL OF NEURAL TRANSMISSION, 2017, 124 (02) :185-192
[5]   NEUROFIBRILLARY TANGLES BUT NOT SENILE PLAQUES PARALLEL DURATION AND SEVERITY OF ALZHEIMERS-DISEASE [J].
ARRIAGADA, PV ;
GROWDON, JH ;
HEDLEYWHYTE, ET ;
HYMAN, BT .
NEUROLOGY, 1992, 42 (03) :631-639
[6]   SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation [J].
Badrinarayanan, Vijay ;
Kendall, Alex ;
Cipolla, Roberto .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2017, 39 (12) :2481-2495
[7]   Neuropathological criteria for the diagnosis of Alzheimer's disease: Are we really ready yet? [J].
Ball, MJ ;
Murdoch, GH .
NEUROBIOLOGY OF AGING, 1997, 18 (04) :S3-S12
[8]   Differences in Cognitive Impairment in Primary Age-Related Tauopathy Versus Alzheimer Disease [J].
Besser, Lilah M. ;
Mock, Charles ;
Teylan, Merilee A. ;
Hassenstab, Jason ;
Kukull, Walter A. ;
Crary, John F. .
JOURNAL OF NEUROPATHOLOGY AND EXPERIMENTAL NEUROLOGY, 2019, 78 (03) :219-228
[9]   STAGING OF ALZHEIMERS-DISEASE-RELATED NEUROFIBRILLARY CHANGES [J].
BRAAK, H ;
BRAAK, E .
NEUROBIOLOGY OF AGING, 1995, 16 (03) :271-278
[10]   Mechanisms of secretion and spreading of pathological tau protein [J].
Brunello, Cecilia A. ;
Merezhko, Maria ;
Uronen, Riikka-Liisa ;
Huttunen, Henri J. .
CELLULAR AND MOLECULAR LIFE SCIENCES, 2020, 77 (09) :1721-1744