Inverse of Level-m Π-Circulant Matrices over Quaternion Division Algebra

被引:0
作者
Sun, Dehua [1 ]
Liu, Sanyang [1 ]
机构
[1] Xidian Univ, Dept Appl Math, Xian 710071, Peoples R China
来源
ADVANCES IN MATRIX THEORY AND ITS APPLICATIONS, VOL II: PROCEEDINGS OF THE EIGHTH INTERNATIONAL CONFERENCE ON MATRIX THEORY AND ITS APPLICATIONS | 2008年
关键词
Level-m Pi-circulant matrix; quaternion division algebra; inverse;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, a new kind of matrices, i.e., level-m Pi-circulant matrix over a quaternion division algebra is considered. we give a sufficient and necessary condition to determine whether a level-m Pi-circulant matrix over a quaternion division algebra is singular or not and proposed an algorithm for the inverse of a level-m Pi-circulant matrix over a quaternion division algebra.
引用
收藏
页码:270 / 273
页数:4
相关论文
共 10 条
  • [1] Adams WW, 1994, Graduate Studies in Mathematics, V3, pxiv+289
  • [2] Baker J., 1985, KYUNGPOOK MATH J, V25, P71
  • [3] Jiang Z. L., 2006, NUMERICAL MATH, V15, P1
  • [4] Jiang Z.-L., 1999, Circulant Matrices
  • [5] Jiang Zhao-lin, 2002, Journal of Xidian University, V29, P561
  • [6] Jiang Zhaolin, 2003, [Bulletin of the KMS, 대한수학회보], V40, P425
  • [7] Mishra B, 2001, ALGORITHMIC ALGEBRA
  • [8] NEW CONSTRUCTIVE METHODS IN CLASSICAL IDEAL THEORY
    MOLLER, HM
    MORA, F
    [J]. JOURNAL OF ALGEBRA, 1986, 100 (01) : 138 - 178
  • [9] NORTHCOTT DG, 1974, J LOND MATH SOC, V8, P190
  • [10] An application of the Grobner basis in computation for the minimal polynomials and inverses of block circulant matrices
    Zhang, SG
    Jiang, ZL
    Liu, SY
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2002, 347 : 101 - 114