Global asymptotic stability of a general stochastic Lotka-Volterra system with delays

被引:18
作者
Huang, Yong [2 ]
Liu, Qun [1 ]
Liu, Yiliang [1 ]
机构
[1] Guangxi Univ Nationalities, Coll Sci, Nanning 530006, Guangxi Provinc, Peoples R China
[2] Baise Univ, Dept Math, Baise 533000, Guangxi Provinc, Peoples R China
关键词
Delays; Stochastic perturbations; Global asymptotic stability; EQUATIONS;
D O I
10.1016/j.aml.2012.08.010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper discusses a general stochastic Lotka-Volterra system with delays. Some conditions for the global asymptotic stability are established. (C) 2012 Published by Elsevier Ltd
引用
收藏
页码:175 / 178
页数:4
相关论文
共 9 条
[1]  
Gard T. C., 1988, INTRO STOCHASTIC DIF
[2]   PERSISTENCE IN STOCHASTIC FOOD WEB MODELS [J].
GARD, TC .
BULLETIN OF MATHEMATICAL BIOLOGY, 1984, 46 (03) :357-370
[3]   GLOBAL ASYMPTOTIC STABILITY IN VOLTERRA POPULATION SYSTEMS [J].
GOPALSAMY, K .
JOURNAL OF MATHEMATICAL BIOLOGY, 1984, 19 (02) :157-168
[4]  
Kuang Y., 1993, Delay Differential Equations with Applications in Population Dynamics
[5]   Global asymptotic stability of a stochastic Lotka-Volterra model with infinite delays [J].
Liu, Meng ;
Wang, Ke .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2012, 17 (08) :3115-3123
[6]   Global stability of stage-structured predator-prey models with Beddington-DeAngelis functional response [J].
Liu, Meng ;
Wang, Ke .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2011, 16 (09) :3792-3797
[7]   Anti-periodic solutions to nonlinear evolution equations [J].
Liu Zhenhai .
JOURNAL OF FUNCTIONAL ANALYSIS, 2010, 258 (06) :2026-2033
[8]   Stochastic differential delay equations of population dynamics [J].
Mao, XR ;
Yuan, CG ;
Zou, JZ .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2005, 304 (01) :296-320
[9]  
May R.M., 2001, STABILITY COMPLEXITY