Suitable Weak Solutions for the Co-rotational Beris-Edwards System in Dimension Three

被引:24
作者
Du, Hengrong [1 ]
Hu, Xianpeng [2 ]
Wang, Changyou [1 ]
机构
[1] Purdue Univ, Dept Math, W Lafayette, IN 47907 USA
[2] City Univ Hong Kong, Dept Math, Hong Kong, Peoples R China
基金
美国国家科学基金会;
关键词
NEMATIC LIQUID-CRYSTALS; Q-TENSOR SYSTEM; NAVIER-STOKES; PARTIAL REGULARITY; WELL-POSEDNESS; FLOW; UNIQUENESS; EXISTENCE; FLUID;
D O I
10.1007/s00205-020-01554-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we establish the global existence of a suitable weak solution to the co-rotational Beris-Edwards Q-tensor system modeling the hydrodynamic motion of nematic liquid crystals with either Landau-De Gennes bulk potential in R-3 or Ball-Majumdar bulk potential in T-3, a system coupling the forced incompressible Navier-Stokes equation with a dissipative, parabolic system of Q-tensor Q in R-3, which is shown to be smooth away from a closed set Sigma whose 1-dimensional parabolic Hausdorff measure is zero.
引用
收藏
页码:749 / 803
页数:55
相关论文
共 40 条
[1]  
Abels H, 2016, ADV DIFFERENTIAL EQU, V21, P109
[2]   WELL-POSEDNESS OF A FULLY COUPLED NAVIER-STOKES/Q-TENSOR SYSTEM WITH INHOMOGENEOUS BOUNDARY DATA [J].
Abels, Helmut ;
Dolzmann, Georg ;
Liu, Yuning .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2014, 46 (04) :3050-3077
[3]  
[Anonymous], 2016, SINGULAR INTEGRALS D
[4]   Nematic Liquid Crystals: From Maier-Saupe to a Continuum Theory [J].
Ball, John M. ;
Majumdar, Apala .
MOLECULAR CRYSTALS AND LIQUID CRYSTALS, 2010, 525 :1-11
[5]  
BERIS A., 1994, THERMODYNAMICS FLOWI
[6]   PARTIAL REGULARITY OF SUITABLE WEAK SOLUTIONS OF THE NAVIER-STOKES EQUATIONS [J].
CAFFARELLI, L ;
KOHN, R ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1982, 35 (06) :771-831
[7]   GLOBAL STRONG SOLUTIONS OF THE FULL NAVIER-STOKES AND Q-TENSOR SYSTEM FOR NEMATIC LIQUID CRYSTAL FLOWS IN TWO DIMENSIONS [J].
Cavaterra, Cecilia ;
Rocca, Elisabetta ;
Wu, Hao ;
Xu, Xiang .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2016, 48 (02) :1368-1399
[8]   Diffusion and mixing in fluid flow [J].
Constantin, P. ;
Kiselev, A. ;
Ryzhik, L. ;
Zlatos, A. .
ANNALS OF MATHEMATICS, 2008, 168 (02) :643-674
[9]  
de Gennes P., 1995, PHYS LIQUID CRYSTALS
[10]  
Doi M., 1988, International series of monographs on physics