On the second smallest prime non-residue

被引:2
作者
McGown, Kevin J. [1 ]
机构
[1] Univ Calif San Diego, Dept Math, La Jolla, CA 92093 USA
关键词
Dirichlet character; Non-residues; Power residues; FIELDS;
D O I
10.1016/j.jnt.2012.09.011
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let x be a non-principal Dirichlet character modulo a prime p. Let q(1) < q(2) denote the two smallest prime non-residues of chi. We give explicit upper bounds on q(2) that improve upon all known results. We also provide a good upper estimate on the product q(1)q(2) which has an upcoming application to the study of norm-Euclidean Galois fields. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:1289 / 1299
页数:11
相关论文
共 16 条
[1]  
[Anonymous], 2012, Mosc. J. Comb. Number Theory
[2]   On a problem of Dobrowolski and Williams and the Polya-Vinogradov inequality [J].
Bachman, G ;
Rachakonda, L .
RAMANUJAN JOURNAL, 2001, 5 (01) :65-71
[3]   On the non existence of the Euclidean algorithm in certain quadratic number fields [J].
Brauer, A .
AMERICAN JOURNAL OF MATHEMATICS, 1940, 62 :697-716
[4]   The smallest quadratic non-remainder. [J].
Brauer, A .
MATHEMATISCHE ZEITSCHRIFT, 1931, 33 :161-176
[5]  
Burgess D.A., 1963, J LONDON MATH SOC, V38, P253
[6]  
Burgess D. A., 1962, Proc. Lond. Math. Soc., V12, P179, DOI 10.1112/plms/s3-12.1.179
[7]   A NOTE ON PRIME K-TH POWER NONRESIDUES [J].
HUDSON, RH .
MANUSCRIPTA MATHEMATICA, 1983, 42 (2-3) :285-288
[8]   ON THE CONSTANT IN BURGESS' BOUND FOR THE NUMBER OF CONSECUTIVE RESIDUES OR NON-RESIDUES [J].
McGown, Kevin J. .
FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI, 2012, 46 (02) :273-284
[9]   NORM-EUCLIDEAN CYCLIC FIELDS OF PRIME DEGREE [J].
McGown, Kevin J. .
INTERNATIONAL JOURNAL OF NUMBER THEORY, 2012, 8 (01) :227-254
[10]  
Norton K.K., 1971, MEM AM MATH SOC, V106