Decision Template Multi-label Classification based on Recursive Dependent Binary Relevance

被引:0
作者
Rauber, Thomas W. [1 ]
Rocha, Victor F. [1 ]
Mello, Lucas H. S. [1 ]
Varejao, Flavio M. [1 ]
机构
[1] Univ Fed Espirito Santo, Ctr Tecnol, Dept Informat, BR-29060970 Vitoria, Brazil
来源
2016 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC) | 2016年
关键词
Classifier Combination; Decision Templates; Multi-label Classification;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In pattern recognition systems, ensemble techniques claim a potential performance improvement compared to single classifier approaches. Decision templates (DT) were proposed as a simple and effective method for combining continuous valued outputs of an ensemble of classifiers. In this paper, the concept of decision template single-label multi-class classifier combination is extended to the multi-label case. The different classifiers needed for a combination are obtained from the continuous re-estimation used in the Recursive Dependent Binary Relevance multi-label classifier. Each base classifier used in this work, delivers besides the class label, a continuous output for the class that can be used to assemble the DTs.
引用
收藏
页码:2402 / 2408
页数:7
相关论文
共 18 条
[1]  
[Anonymous], 2010, P 16 ACM SIGKDD INT
[2]  
[Anonymous], 2013, WORLD SCI
[3]   On Meta-Learning for Dynamic Ensemble Selection [J].
Cruz, Rafael M. O. ;
Sabourin, Robert ;
Cavalcanti, George D. C. .
2014 22ND INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2014, :1230-1235
[4]  
Dembczynski Krzysztof, 2010, ICML, P279
[5]  
Fan RE, 2008, J MACH LEARN RES, V9, P1871
[6]   Diversity measures for one-class classifier ensembles [J].
Krawczyk, Bartosz ;
Wozniak, Michal .
NEUROCOMPUTING, 2014, 126 :36-44
[7]  
Kuncheva L., 2004, Combining Pattern Classifiers: Methods and Algorithms, VVolume 47, DOI [10.1002/0471660264, DOI 10.1002/0471660264]
[8]   Decision templates for multiple classifier fusion: an experimental comparison [J].
Kuncheva, LI ;
Bezdek, JC ;
Duin, RPW .
PATTERN RECOGNITION, 2001, 34 (02) :299-314
[9]   An extensive experimental comparison of methods for multi-label learning [J].
Madjarov, Gjorgji ;
Kocev, Dragi ;
Gjorgjevikj, Dejan ;
Dzeroski, Saso .
PATTERN RECOGNITION, 2012, 45 (09) :3084-3104
[10]   Two stage architecture for multi-label learning [J].
Madjarov, Gjorgji ;
Gjorgjevikj, Dejan ;
Dzeroski, Saso .
PATTERN RECOGNITION, 2012, 45 (03) :1019-1034