CALCULATION OF ACCELERATED STATIONARY CREEP RATE ACTIVATION ENERGY FOR A STEEL MICROSTRUCTURE WITH A UNIFORM DISTRIBUTION OF CARBIDE PARTICLES

被引:0
作者
Zuzek, Borut [1 ]
Vodopivec, Franc [1 ]
Podgornik, Bojan [1 ]
Jenko, Monika [1 ]
Godec, Matjaz [1 ]
机构
[1] Inst Met & Technol, Ljubljana 1000, Slovenia
来源
MATERIALI IN TEHNOLOGIJE | 2012年 / 46卷 / 06期
关键词
creep-resistant steel; microstructure; carbide particle size; calculation of creep rate; creep activation energy; P91 TYPE STEEL; STRESS; MODEL;
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Recent research has shown a dependence of the accelerated creep rate on the carbide particle distribution in martensite, with the creep rate depending on the number of carbide particles per unit of surface and their mutual distance. The aim of our work was to calculate the activation energy for different carbide particle sizes and particle spacings, using a modified equation for the creep rate calculation. For creep-resistant steel with a microstructure of ferrite matrix and a uniform distribution of M23C6 carbide particles the creep rate was calculated in the temperature range 540 degrees C to 630 degrees C and a carbide particle size between 0.1 mu m and 0.4 mu m. An equal effect on the creep rate increase was found for all four carbide particle sizes. From the calculated creep rates a creep activation energy of 248.7 kJ/mol was calculated, independent of the particles size. The calculated creep activation energy was found to be close to the self-diffusion activation energy in alpha-iron.
引用
收藏
页码:661 / 664
页数:4
相关论文
共 19 条
[1]  
Artz E., 1988, ACTA METALL, V36, P1053
[2]  
ARTZ E, 1986, ACTA METALL, V34, P1893
[3]  
Ashby M. F., 1970, P 2 INT C STRENGTH M, P507
[4]   An analysis of a set of creep data for a 9Cr-1Mo-0.2V (P91 type) steel [J].
Cadek, J ;
Sustek, V ;
Pahutova, M .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 1997, 225 (1-2) :22-28
[5]  
Honeycombe R. W. K., 1984, PLASTIC DEFORMATION, P91
[6]  
Hornbogen E., 1980, EINFLUSS TEILCHEN ZW, P31
[7]   Strengthening mechanisms of creep resistant tempered martensitic steel [J].
Maruyama, K ;
Sawada, K ;
Koike, J .
ISIJ INTERNATIONAL, 2001, 41 (06) :641-653
[8]  
Oikawa H, 2008, WOODHEAD PUBL MATER, P241, DOI 10.1533/9781845694012.2.241
[9]  
Reed-Hill R. E., 1994, PHYS METALLURGY PRIN, P118
[10]  
Rosler J., 1988, ACTA METALL, V36, P1043