Critical behavior of the spin-1 and spin-3/2 Baxter-Wu model in a crystal field

被引:10
作者
Dias, D. A. [1 ,2 ]
Xavier, J. C. [3 ]
Plascak, J. A. [1 ,4 ,5 ]
机构
[1] Univ Fed Minas Gerais, Inst Ciencias Exatas, Dept Fis, Caixa Postal 702, BR-30123970 Belo Horizonte, MG, Brazil
[2] Univ Fed Uberlandia, Campus Patos de Minas,Av Getulio Vargas 230, BR-38700103 Patos De Minas, MG, Brazil
[3] Univ Fed Uberlandia, Inst Fis, Caixa Postal 593, BR-38400902 Uberlandia, MG, Brazil
[4] Univ Fed Paraiba, Ctr Ciencias Exatas & Nat, Dept Fis, CCEN Cidade Univ,Campus 1, BR-58051970 Joao Pessoa, Paraiba, Brazil
[5] Univ Georgia, Ctr Simulat Phys, Athens, GA 30602 USA
关键词
1ST-ORDER PHASE-TRANSITIONS; BLUME-CAPEL MODEL; CONFORMAL-INVARIANCE; ISING-MODEL; LATTICE; UNIVERSALITY;
D O I
10.1103/PhysRevE.95.012103
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The phase diagram and the critical behavior of the spin-1 and the spin-3/2 two-dimensional Baxter-Wu model in a crystal field are studied by conventional finite-size scaling and conformal invariance theory. The phase diagram of this model, for the spin-1 case, is qualitatively the same as those of the diluted 4-states Potts model and the spin-1 Blume-Capel model. However, for the present case, instead of a tricritical point one has a pentacritical point for a finite value of the crystal field, in disagreement with previous work based on finite-size calculations. On the other hand, for the spin-3/2 case, the phase diagram is much richer and can present, besides a pentacritical point, an additional multicritical end point. Our results also support that the universality class of the critical behavior of the spin-1 and spin-3/2 Baxter-Wu model in a crystal field is the same as the pure Baxter-Wu model, even at the multicritical points.
引用
收藏
页数:11
相关论文
共 42 条
[1]   Conformal invariance studies of the Baxter-Wu model and a related site-colouring problem [J].
Alcaraz, FC ;
Xavier, JC .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1997, 30 (08) :L203-L209
[2]   Critical and off-critical studies of the Baxter-Wu model with general toroidal boundary conditions [J].
Alcaraz, FC ;
Xavier, JC .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1999, 32 (11) :2041-2060
[3]  
[Anonymous], 2007, Dover books on physics
[4]  
Barber MN., 1983, PHASE TRANSITIONS CR, Vvol 8
[5]   ISING-MODEL ON A TRIANGULAR LATTICE WITH 3-SPIN INTERACTIONS .1. EIGENVALUE EQUATION [J].
BAXTER, RJ ;
WU, FY .
AUSTRALIAN JOURNAL OF PHYSICS, 1974, 27 (03) :357-367
[6]   Aperiodicity-induced second-order phase transition in the 8-state Potts model [J].
Berche, PE ;
Chatelain, C ;
Berche, B .
PHYSICAL REVIEW LETTERS, 1998, 80 (02) :297-300
[7]   CONFORMAL-INVARIANCE, THE CENTRAL CHARGE, AND UNIVERSAL FINITE-SIZE AMPLITUDES AT CRITICALITY [J].
BLOTE, HWJ ;
CARDY, JL ;
NIGHTINGALE, MP .
PHYSICAL REVIEW LETTERS, 1986, 56 (07) :742-745
[8]   THEORY OF FIRST-ORDER MAGNETIC PHASE CHANGE IN UO2 [J].
BLUME, M .
PHYSICAL REVIEW, 1966, 141 (02) :517-&
[9]   A RIGOROUS THEORY OF FINITE-SIZE SCALING AT 1ST-ORDER PHASE-TRANSITIONS [J].
BORGS, C ;
KOTECKY, R .
JOURNAL OF STATISTICAL PHYSICS, 1990, 61 (1-2) :79-119
[10]   FINITE-SIZE SCALING FOR POTTS MODELS [J].
BORGS, C ;
KOTECKY, R ;
MIRACLESOLE, S .
JOURNAL OF STATISTICAL PHYSICS, 1991, 62 (3-4) :529-551