Utilization of TALEN and CRISPR/Cas9 technologies for gene targeting and modification

被引:19
作者
Pu, Jiali [1 ,2 ]
Frescas, David [1 ]
Zhang, Baorong [2 ]
Feng, Jian [1 ,3 ]
机构
[1] SUNY Buffalo, Dept Physiol & Biophys, Buffalo, NY 14214 USA
[2] Zhejiang Univ, Coll Med, Affiliated Hosp 2, Dept Neurol, Hangzhou 310009, Zhejiang, Peoples R China
[3] Vet Affairs Western New York Healthcare Syst, Buffalo, NY 14215 USA
关键词
TALENs; CRISPR/Cas9; gene editing; disease modeling; gene therapy; EMBRYONIC STEM-CELLS; STRAND BREAK REPAIR; HIGH-EFFICIENCY; HOMOLOGOUS RECOMBINATION; GENOME MODIFICATION; DROSOPHILA GENOME; CAS9; NUCLEASE; ZINC-FINGER; RNA; GENERATION;
D O I
10.1177/1535370215584932
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
The capability to modify the genome precisely and efficiently offers an extremely useful tool for biomedical research. Recent developments in genome editing technologies such as transcription activator-like effector nuclease and the clustered regularly interspaced short palindromic repeats system have made genome modification available for a number of organisms with relative ease. Here, we introduce these genome editing techniques, compare and contrast each technical approach and discuss their potential to study the underlying mechanisms of human disease using patient-derived induced pluripotent stem cells.
引用
收藏
页码:1065 / 1070
页数:6
相关论文
共 50 条
  • [41] Utilization of the CRISPR/Cas9 system for the efficient production of mutant mice using crRNA/tracrRNA with Cas9 nickase and Fokl-dCas9
    Terao, Miho
    Tamano, Moe
    Hara, Satoshi
    Kato, Tomoko
    Kinoshita, Masato
    Takada, Shuji
    EXPERIMENTAL ANIMALS, 2016, 65 (03) : 275 - 283
  • [42] CRISPR/Cas9 β-globin gene targeting in human haematopoietic stem cells
    Dever, Daniel P.
    Bak, Rasmus O.
    Reinisch, Andreas
    Camarena, Joab
    Washington, Gabriel
    Nicolas, Carmencita E.
    Pavel-Dinu, Mara
    Saxena, Nivi
    Wilkens, Alec B.
    Mantri, Sruthi
    Uchida, Nobuko
    Hendel, Ayal
    Narla, Anupama
    Majeti, Ravindra
    Weinberg, Kenneth I.
    Porteus, Matthew H.
    NATURE, 2016, 539 (7629) : 384 - 389
  • [43] Modulating CRISPR/Cas9 genome-editing activity by small molecules
    Chen, Siwei
    Chen, Deng
    Liu, Bin
    Haisma, Hidde J.
    DRUG DISCOVERY TODAY, 2022, 27 (04) : 951 - 966
  • [44] CRISPR/Cas9 in allergic and immunologic diseases
    Goodman, Michael A.
    Manesh, Donya Moradi
    Malik, Punam
    Rothenberg, Marc E.
    EXPERT REVIEW OF CLINICAL IMMUNOLOGY, 2017, 13 (01) : 5 - 9
  • [45] CRISPR/Cas9
    杨丽
    中南医学科学杂志, 2016, 44 (05) : 585 - 585
  • [46] CRISPR/Cas9
    Mizuno, Naoaki
    Mizutani, Eiji
    Sato, Hideyuki
    Kasai, Mariko
    Nakauchi, Hiromitsu
    Yamaguchi, Tomoyuki
    BIO-PROTOCOL, 2019, 9 (13):
  • [47] Targeting Hepatitis B Virus With CRISPR/Cas9
    Seeger, Christoph
    Sohn, Ji A.
    MOLECULAR THERAPY-NUCLEIC ACIDS, 2014, 3 : e216
  • [48] The Applications of CRISPR/Cas9 System for Urinary System Tumor
    Li, Shulin
    Wu, Yuqi
    Wang, Xiangwei
    CURRENT TOPICS IN MEDICINAL CHEMISTRY, 2023, 23 (10) : 897 - 906
  • [49] CRISPR/Cas9 Technology as an Emerging Tool for Targeting Amyotrophic Lateral Sclerosis (ALS)
    Kruminis-Kaszkiel, Ewa
    Juranek, Judyta
    Maksymowicz, Wojciech
    Wojtkiewicz, Joanna
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2018, 19 (03)
  • [50] Viral diversity is an obligate consideration in CRISPR/Cas9 designs for targeting the HIV reservoir
    Pavitra Roychoudhury
    Harshana De Silva Feelixge
    Daniel Reeves
    Bryan T. Mayer
    Daniel Stone
    Joshua T. Schiffer
    Keith R. Jerome
    BMC Biology, 16