DeepMapi: a Fully Automatic Registration Method for Mesoscopic Optical Brain Images Using Convolutional Neural Networks

被引:13
作者
Ni, Hong [1 ]
Feng, Zhao [1 ]
Guan, Yue [1 ]
Jia, Xueyan [2 ]
Chen, Wu [1 ]
Jiang, Tao [2 ]
Zhong, Qiuyuan [1 ]
Yuan, Jing [1 ,2 ]
Ren, Miao [2 ,3 ]
Li, Xiangning [1 ,2 ]
Gong, Hui [1 ,2 ,4 ]
Luo, Qingming [1 ,2 ,3 ]
Li, Anan [1 ,2 ,4 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Engn Sci, MoE,Key Lab Biomed Photon, Britton Chance Ctr Biomed Photon,Wuhan Natl Lab O, Wuhan, Peoples R China
[2] JITRI Inst Brainsmat, HUST Suzhou Inst Brainsmat, Suzhou, Peoples R China
[3] Hainan Univ, Sch Biomed Engn, Haikou, Hainan, Peoples R China
[4] Chinese Acad Sci, Ctr Excellence Brain Sci & Intelligence Technol, Shanghai, Peoples R China
基金
中国国家自然科学基金; 芬兰科学院;
关键词
Brain image registration; Deep learning; Convolutional neural networks; Mesoscopic optical images; LEARNING FRAMEWORK; DEFORMABLE IMAGE; TOMOGRAPHY; ATLAS;
D O I
10.1007/s12021-020-09483-7
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The extreme complexity of mammalian brains requires a comprehensive deconstruction of neuroanatomical structures. Scientists normally use a brain stereotactic atlas to determine the locations of neurons and neuronal circuits. However, different brain images are normally not naturally aligned even when they are imaged with the same setup, let alone under the differing resolutions and dataset sizes used in mesoscopic imaging. As a result, it is difficult to achieve high-throughput automatic registration without manual intervention. Here, we propose a deep learning-based registration method called DeepMapi to predict a deformation field used to register mesoscopic optical images to an atlas. We use a self-feedback strategy to address the problem of imbalanced training sets (sampling at a fixed step size in nonuniform brains of structures and deformations) and use a dual-hierarchical network to capture the large and small deformations. By comparing DeepMapi with other registration methods, we demonstrate its superiority over a set of ground truth images, including both optical and MRI images. DeepMapi achieves fully automatic registration of mesoscopic micro-optical images, even macroscopic MRI datasets, in minutes, with an accuracy comparable to those of manual annotations by anatomists.
引用
收藏
页码:267 / 284
页数:18
相关论文
共 50 条
  • [31] Automatic Segmentation of Non-tumor Tissues in Glioma MR Brain Images Using Deformable Registration with Partial Convolutional Networks
    Liu, Zhongqiang
    Gu, Dongdong
    Zhang, Yu
    Cao, Xiaohuan
    Xue, Zhong
    BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES (BRAINLES 2020), PT I, 2021, 12658 : 41 - 50
  • [32] An automatic nuclei segmentation method based on deep convolutional neural networks for histopathology images
    Hwejin Jung
    Bilal Lodhi
    Jaewoo Kang
    BMC Biomedical Engineering, 1 (1):
  • [33] A Cloud Detection Algorithm for Remote Sensing Images Using Fully Convolutional Neural Networks
    Mohajerani, Sorour
    Krammer, Thomas A.
    Saeedi, Parvaneh
    2018 IEEE 20TH INTERNATIONAL WORKSHOP ON MULTIMEDIA SIGNAL PROCESSING (MMSP), 2018,
  • [34] Leaning Impedance Distribution of Object from Images Using Fully Convolutional Neural Networks
    Kamigaki, Masahiro
    Muramatsu, Hisayoshi
    Katsura, Seiichiro
    IECON 2020: THE 46TH ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY, 2020, : 2662 - 2667
  • [35] Myocardial segmentation in cardiac magnetic resonance images using fully convolutional neural networks
    Romaguera, Liset Vazquez
    Romero, Francisco Perdigon
    Fernandes Costa Filho, Cicero Ferreira
    Fernandes Costa, Marly Guimaraes
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2018, 44 : 48 - 57
  • [36] Automatic brain tissue segmentation in fetal MRI using convolutional neural networks
    Khalili, N.
    Lessmann, N.
    Turk, E.
    Claessens, N.
    de Heus, R.
    Kolk, T.
    Viergever, M. A.
    Benders, M. J. N. L.
    Isgum, I.
    MAGNETIC RESONANCE IMAGING, 2019, 64 : 77 - 89
  • [37] Automatic Gleason grading of HE stained microscopic prostate images using deep convolutional neural networks
    Gummeson, Anna
    Arvidsson, Ida
    Ohlsson, Mattias
    Overgaard, Niels Christian
    Krzyzanowska, Agnieszka
    Heyden, Anders
    Bjartell, Anders
    Astrom, Kalle
    MEDICAL IMAGING 2017: DIGITAL PATHOLOGY, 2017, 10140
  • [38] Iterative convolutional neural networks for automatic vertebra identification and segmentation in CT images
    Lessmann, Nikolas
    van Ginneken, Bram
    Isgum, Ivana
    MEDICAL IMAGING 2018: IMAGE PROCESSING, 2018, 10574
  • [39] The Application of Deep Convolutional Neural Networks to Brain Cancer Images: A Survey
    Zadeh Shirazi, Amin
    Fornaciari, Eric
    McDonnell, Mark D.
    Yaghoobi, Mahdi
    Cevallos, Yesenia
    Tello-Oquendo, Luis
    Inca, Deysi
    Gomez, Guillermo A.
    JOURNAL OF PERSONALIZED MEDICINE, 2020, 10 (04): : 1 - 27
  • [40] Diagnosis of Eye Retinal Diseases Based on Convolutional Neural Networks Using Optical Coherence Images
    Sertkaya, Mehmet Emre
    Ergen, Burhan
    Togacar, Mesut
    PROCEEDINGS OF THE 2019 23RD INTERNATIONAL CONFERENCE ELECTRONICS (ELECTRONICS 2019), 2019,