DeepMapi: a Fully Automatic Registration Method for Mesoscopic Optical Brain Images Using Convolutional Neural Networks

被引:13
|
作者
Ni, Hong [1 ]
Feng, Zhao [1 ]
Guan, Yue [1 ]
Jia, Xueyan [2 ]
Chen, Wu [1 ]
Jiang, Tao [2 ]
Zhong, Qiuyuan [1 ]
Yuan, Jing [1 ,2 ]
Ren, Miao [2 ,3 ]
Li, Xiangning [1 ,2 ]
Gong, Hui [1 ,2 ,4 ]
Luo, Qingming [1 ,2 ,3 ]
Li, Anan [1 ,2 ,4 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Engn Sci, MoE,Key Lab Biomed Photon, Britton Chance Ctr Biomed Photon,Wuhan Natl Lab O, Wuhan, Peoples R China
[2] JITRI Inst Brainsmat, HUST Suzhou Inst Brainsmat, Suzhou, Peoples R China
[3] Hainan Univ, Sch Biomed Engn, Haikou, Hainan, Peoples R China
[4] Chinese Acad Sci, Ctr Excellence Brain Sci & Intelligence Technol, Shanghai, Peoples R China
基金
中国国家自然科学基金; 芬兰科学院;
关键词
Brain image registration; Deep learning; Convolutional neural networks; Mesoscopic optical images; LEARNING FRAMEWORK; DEFORMABLE IMAGE; TOMOGRAPHY; ATLAS;
D O I
10.1007/s12021-020-09483-7
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The extreme complexity of mammalian brains requires a comprehensive deconstruction of neuroanatomical structures. Scientists normally use a brain stereotactic atlas to determine the locations of neurons and neuronal circuits. However, different brain images are normally not naturally aligned even when they are imaged with the same setup, let alone under the differing resolutions and dataset sizes used in mesoscopic imaging. As a result, it is difficult to achieve high-throughput automatic registration without manual intervention. Here, we propose a deep learning-based registration method called DeepMapi to predict a deformation field used to register mesoscopic optical images to an atlas. We use a self-feedback strategy to address the problem of imbalanced training sets (sampling at a fixed step size in nonuniform brains of structures and deformations) and use a dual-hierarchical network to capture the large and small deformations. By comparing DeepMapi with other registration methods, we demonstrate its superiority over a set of ground truth images, including both optical and MRI images. DeepMapi achieves fully automatic registration of mesoscopic micro-optical images, even macroscopic MRI datasets, in minutes, with an accuracy comparable to those of manual annotations by anatomists.
引用
收藏
页码:267 / 284
页数:18
相关论文
共 50 条
  • [21] Difficulty-aware hierarchical convolutional neural networks for deformable registration of brain MR images
    Huang, Yunzhi
    Ahmad, Sahar
    Fan, Jingfan
    Shen, Dinggang
    Yap, Pew-Thian
    MEDICAL IMAGE ANALYSIS, 2021, 67
  • [22] Segmentation of Drosophila heart in optical coherence microscopy images using convolutional neural networks
    Duan, Lian
    Qin, Xi
    He, Yuanhao
    Sang, Xialin
    Pan, Jinda
    Xu, Tao
    Men, Jing
    Tanzi, Rudolph E.
    Li, Airong
    Ma, Yutao
    Zhou, Chao
    JOURNAL OF BIOPHOTONICS, 2018, 11 (12)
  • [23] Deep Convolutional Neural Networks on Automatic Classification for Skin Tumour Images
    Simic, Svetlana
    Simic, Svetislav D.
    Bankovic, Zorana
    Ivkov-Simic, Milana
    Villar, Jose R.
    Simic, Dragan
    LOGIC JOURNAL OF THE IGPL, 2022, 30 (04) : 649 - 663
  • [24] Fully Automatic Karyotyping via Deep Convolutional Neural Networks
    Wang, Chengyu
    Yu, Limin
    Su, Jionglong
    Shen, Juming
    Selis, Valerio
    Yang, Chunxiao
    Ma, Fei
    IEEE ACCESS, 2024, 12 : 46081 - 46092
  • [25] Automatic Lung Nodule Detection in CT Images Using Convolutional Neural Networks
    Shaukat, Furcian
    Javed, Kamran
    Raja, Gulistan
    Mir, Junaid
    Shahid, Muhammad Laiq Ur Rahman
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2019, E102A (10) : 1364 - 1373
  • [26] Automatic Assessment of Hoarding Clutter from Images Using Convolutional Neural Networks
    Tezcan, M. Ozan
    Konrad, Janusz
    Muroff, Jordana
    2018 IEEE SOUTHWEST SYMPOSIUM ON IMAGE ANALYSIS AND INTERPRETATION (SSIAI), 2018, : 109 - 112
  • [27] Automatic segmentation of the left ventricle in echocardiographic images using convolutional neural networks
    Kim, Taeouk
    Hedayat, Mohammadali
    Vaitkus, Veronica V.
    Belohlavek, Marek
    Krishnamurthy, Vinayak
    Borazjani, Iman
    QUANTITATIVE IMAGING IN MEDICINE AND SURGERY, 2021, 11 (05) : 1763 - 1781
  • [28] Automatic anatomical classification of colonoscopic images using deep convolutional neural networks
    Saito, Hiroaki
    Tanimoto, Tetsuya
    Ozawa, Tsuyoshi
    Ishihara, Soichiro
    Fujishiro, Mitsuhiro
    Shichijo, Satoki
    Hirasawa, Dai
    Matsuda, Tomoki
    Endo, Yuma
    Tada, Tomohiro
    GASTROENTEROLOGY REPORT, 2021, 9 (03): : 226 - 233
  • [29] Using Convolutional Neural Networks to Recognition of Dolphin Images
    Quinonez, Yadira
    Zatarain, Oscar
    Lizarraga, Carmen
    Peraza, Juan
    TRENDS AND APPLICATIONS IN SOFTWARE ENGINEERING (CIMPS 2018), 2019, 865 : 236 - 245
  • [30] Automatic Segmentation of Non-tumor Tissues in Glioma MR Brain Images Using Deformable Registration with Partial Convolutional Networks
    Liu, Zhongqiang
    Gu, Dongdong
    Zhang, Yu
    Cao, Xiaohuan
    Xue, Zhong
    BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES (BRAINLES 2020), PT I, 2021, 12658 : 41 - 50