Dissipative and stochastic geometric phase of a qubit within a canonical Langevin framework

被引:7
作者
Bargueno, Pedro [1 ]
Miret-Artes, Salvador [2 ]
机构
[1] Univ Complutense Madrid, Dept Fis Mat, E-28040 Madrid, Spain
[2] CSIC, Inst Fis Fundamental, E-28006 Madrid, Spain
来源
PHYSICAL REVIEW A | 2013年 / 87卷 / 01期
关键词
BERRY TOPOLOGICAL PHASE; HOLONOMY; SHIFTS;
D O I
10.1103/PhysRevA.87.012125
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Dissipative and stochastic effects in the geometric phase of a qubit are taken into account using a geometrical description of the corresponding open-system dynamics within a canonical Langevin framework based on a Caldeira-Leggett-like Hamiltonian. By extending the Hopf fibration S-3 -> S-2 to include such effects, the exact geometric phase for a dissipative qubit is obtained, whereas numerical calculations are used to include finite-temperature effects on it. DOI: 10.1103/PhysRevA.87.012125
引用
收藏
页数:4
相关论文
共 36 条
[1]   PHASE-CHANGE DURING A CYCLIC QUANTUM EVOLUTION [J].
AHARONOV, Y ;
ANANDAN, J .
PHYSICAL REVIEW LETTERS, 1987, 58 (16) :1593-1596
[2]  
Bengtsson I., 2017, GEOMETRY QUANTUM STA, DOI DOI 10.1017/9781139207010
[4]   MANIFESTATION OF BERRY TOPOLOGICAL PHASE IN NEUTRON SPIN ROTATION [J].
BITTER, T ;
DUBBERS, D .
PHYSICAL REVIEW LETTERS, 1987, 59 (03) :251-254
[5]  
Caldirola P., 1941, Il Nuovo Cimento, VI8, P393, DOI [10.1007/BF02960144, DOI 10.1007/BF02960144]
[6]   Geometric phase in open systems [J].
Carollo, A ;
Fuentes-Guridi, I ;
Santos, MF ;
Vedral, V .
PHYSICAL REVIEW LETTERS, 2003, 90 (16)
[7]  
Chruszinsky D., 2004, GEOMETRIC PHASES CLA, V6
[8]   Dissipative geometric phase and decoherence in parity-violating chiral molecules [J].
Dorta-Urra, A. ;
Penate-Rodriguez, H. C. ;
Bargueno, P. ;
Rojas-Lorenzo, G. ;
Miret-Artes, S. .
JOURNAL OF CHEMICAL PHYSICS, 2012, 136 (17)
[9]   ANGLE VARIABLE HOLONOMY IN ADIABATIC EXCURSION OF AN INTEGRABLE HAMILTONIAN [J].
HANNAY, JH .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1985, 18 (02) :221-230
[10]   Mapping of three dimensional spheres on spheric surphaces [J].
Hopf, H .
MATHEMATISCHE ANNALEN, 1931, 104 :637-665