M-estimators with non-standard rates of convergence and weakly dependent data

被引:1
作者
Caner, M [1 ]
机构
[1] Univ Pittsburgh, Dept Econ, Pittsburgh, PA 15260 USA
关键词
empirical process methods; censored regression; maximum score estimator;
D O I
10.1016/j.jspi.2004.09.004
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper analyzes M-estimators over general objective functions. We do not assume convexity and differentiability of the functions. A new result regarding M-estimators is derived. Unlike most of the former econometric literature, the rate of convergence is not square root n. The rate of convergence is non-standard and depends on the moment bounds of the objective function analyzed. We can actually connect the rate of convergence to the smoothness of the objective function in certain class of functions as described in van der Vaart and Wellner (Weak Convergence and Empirical Processes, Springer, Berlin, 1996). We also simplify this rate of convergence idea and extend to weakly dependent data from iid case. This rate is simple and usable in econometrics literature. We illustrate the techniques by deriving the rate of convergence for LAD estimator for censored regression and maximum score estimator with weakly dependent data. (c) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:1207 / 1219
页数:13
相关论文
共 23 条
[1]  
Andrews D.W.K., 1993, Econometric Rev., V12, P183
[2]  
Andrews Donald W. K, 1994, HDB ECONOMETRICS, V4
[3]  
[Anonymous], P 5 BERK S MATH STAT
[4]   Asymptotic theory for M-estimators over a convex kernel [J].
Arcones, MA .
ECONOMETRIC THEORY, 1998, 14 (04) :387-422
[5]   LEAST ABSOLUTE DEVIATION ESTIMATION OF A SHIFT [J].
BAI, JS .
ECONOMETRIC THEORY, 1995, 11 (03) :403-436
[6]  
BAI ZD, 1992, STAT SINICA, V2, P237
[7]  
Berbee H., 1979, RANDOM WALKS STATION
[8]   A note on least absolute deviation estimation of a threshold model [J].
Caner, M .
ECONOMETRIC THEORY, 2002, 18 (03) :800-814
[9]   Threshold autoregression with a unit root [J].
Caner, M ;
Hansen, BE .
ECONOMETRICA, 2001, 69 (06) :1555-1596
[10]  
DOUKHAN P, 1995, ANN I H POINCARE-PR, V31, P393