Unsupervised Multi-modal Learning

被引:2
作者
Iqbal, Mohammed Shameer [1 ]
机构
[1] Acadia Univ, Jodrey Sch Comp Sci, Wolfville, NS B4P 2R6, Canada
来源
ADVANCES IN ARTIFICIAL INTELLIGENCE (AI 2015) | 2015年 / 9091卷
关键词
Unsupervised learning; Associative memory; Restricted boltzmann machines; Multi-modal data; Sensory-motor learning;
D O I
10.1007/978-3-319-18356-5_32
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present an unsupervised deep belief network that can learn from multiple channels and is capable of dealing with missing information. The network learns transferable features to accommodate the addition of a new channel using a combination of unsupervised learning and a simple back-fitting.
引用
收藏
页码:343 / 346
页数:4
相关论文
共 9 条
  • [1] SHORT-TERM SPECTRAL ANALYSIS, SYNTHESIS, AND MODIFICATION BY DISCRETE FOURIER-TRANSFORM
    ALLEN, JB
    [J]. IEEE TRANSACTIONS ON ACOUSTICS SPEECH AND SIGNAL PROCESSING, 1977, 25 (03): : 235 - 238
  • [2] Learning Deep Architectures for AI
    Bengio, Yoshua
    [J]. FOUNDATIONS AND TRENDS IN MACHINE LEARNING, 2009, 2 (01): : 1 - 127
  • [3] Geoffrey E., 2006, SCIENCE, V313, P504
  • [4] Hinton Geoffrey., 2010, Mo- mentum, V9
  • [5] Learning multiple a layers of representation
    Hinton, Geoffrey E.
    [J]. TRENDS IN COGNITIVE SCIENCES, 2007, 11 (10) : 428 - 434
  • [6] A fast learning algorithm for deep belief nets
    Hinton, Geoffrey E.
    Osindero, Simon
    Teh, Yee-Whye
    [J]. NEURAL COMPUTATION, 2006, 18 (07) : 1527 - 1554
  • [7] Ngiam J., 2011, PROC ICML, P689
  • [8] Srivastava N, 2014, J MACH LEARN RES, V15, P2949
  • [9] Wang T., 2014, THESIS ACADIA U