Numerical simulation of a bubbling fluidized bed reactor for sorption-enhanced steam methane reforming under industrially relevant conditions: Effect of sorbent (dolomite and CaO-Ca12Al14O33) and operational parameters

被引:32
作者
Herce, Carlos [1 ]
Cortes, Cristobal [2 ]
Stendardo, Stefano [3 ]
机构
[1] Univ Zaragoza, Ctr Res Energy Resources & Consumpt, CIRCE Inst, C Mariano Esquillor Gomez 15, Zaragoza, Spain
[2] Univ Zaragoza, Dept Mech Engn, Campus Rio Ebro,Bldg B,Maria de Luna S-N, Zaragoza 50018, Spain
[3] Italian Natl Agcy New Technol Energy & Sustainabl, ENEA, Via Anguillarese 301, I-00123 Rome, Italy
关键词
SE-SMR; CFD; Hydrogen production; CO2; capture; Design of experiments; CARBON-DIOXIDE CAPTURE; SITU CO2 REMOVAL; HYDROGEN-PRODUCTION; GAS; CATALYST; STORAGE; MODEL; PERFORMANCE; EFFICIENCY; BEHAVIOR;
D O I
10.1016/j.fuproc.2019.01.003
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Sorption-Enhanced Steam Methane Reforming (SE-SMR) is a promising technology for effective production of hydrogen with simultaneous CO2 capture from conventional fuels (e.g. methane, coal) and alternative fuels (e.g. biomass). SE-SMR combines steam methane reforming reaction and water-gas shift conversion reaction with a high temperature CO2 sorption system using a mixture of solid catalyst and sorbent. In this work, a methodology that combines Taguchi robust Design of Experiments (DoE) with previously validated CFD simulations [19] is presented. The main objective is to carry on a multi-criteria analysis of the effect of different sorbents and pretreatments and operation parameters in the response of the 500 kW(th) bubbling fluidized bed (BFB) reactor installed in the ZECOMIX (Zero Emissions of CarbOn with MIXed technologies) research infrastructure of ENEA. The effect of different sorbents (i.e. naturally occurring dolomite and synthetic CaO-Ca12Al14O33) and pretreatment seems to be negligible at high scales compared with heat and mass transfer mechanisms. Other parameters (i.e. temperature, pressure, particle diameter, gas velocity, bed height, presence of catalyst and sorbent, treatment of sorbent, syngas composition) have been also evaluated. The present methodology can be a useful approach for a preliminary design and optimization of a full-scale SE-SMR reactors.
引用
收藏
页码:137 / 148
页数:12
相关论文
共 63 条
[1]   The maximum capture efficiency of CO2 using a carbonation/calcination cycle of CaO/CaCO3 [J].
Abanades, JC .
CHEMICAL ENGINEERING JOURNAL, 2002, 90 (03) :303-306
[2]   Sorption enhanced catalytic Steam Methane Reforming: Experimental data and simulations describing the behaviour of bi-functional particles [J].
Aloisi, I. ;
Di Giuliano, A. ;
Di Carlo, A. ;
Foscolo, P. U. ;
Courson, C. ;
Gallucci, K. .
CHEMICAL ENGINEERING JOURNAL, 2017, 314 :570-582
[3]  
[Anonymous], 2010, PRIMER TAGUCHI METHO
[4]   Continuous hydrogen production by sorption enhanced steam methane reforming (SE-SMR) in a circulating fluidized bed reactor: Sorbent to catalyst ratio dependencies [J].
Arstad, Bjornar ;
Prostak, Joanna ;
Blom, Richard .
CHEMICAL ENGINEERING JOURNAL, 2012, 189 :413-421
[5]   Hydrogen from methane in a single-step process [J].
Balasubramanian, B ;
Ortiz, AL ;
Kaytakoglu, S ;
Harrison, DP .
CHEMICAL ENGINEERING SCIENCE, 1999, 54 (15-16) :3543-3552
[6]   Hydrogen production through sorption-enhanced steam methane reforming and membrane technology: A review [J].
Barelli, L. ;
Bidini, G. ;
Gallorini, F. ;
Servili, S. .
ENERGY, 2008, 33 (04) :554-570
[7]   EFFECT OF THE PRODUCT LAYER ON THE KINETICS OF THE CO2-LIME REACTION [J].
BHATIA, SK ;
PERLMUTTER, DD .
AICHE JOURNAL, 1983, 29 (01) :79-86
[8]   Carbon capture and storage update [J].
Boot-Handford, M. E. ;
Abanades, J. C. ;
Anthony, E. J. ;
Blunt, M. J. ;
Brandani, S. ;
Mac Dowell, N. ;
Fernandez, J. R. ;
Ferrari, M. -C. ;
Gross, R. ;
Hallett, J. P. ;
Haszeldine, R. S. ;
Heptonstall, P. ;
Lyngfelt, A. ;
Makuch, Z. ;
Mangano, E. ;
Porter, R. T. J. ;
Pourkashanian, M. ;
Rochelle, G. T. ;
Shah, N. ;
Yao, J. G. ;
Fennell, P. S. .
ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (01) :130-189
[9]  
Brun-Tsekhovoi A., 1988, Hydrogen Energy Progress VII, Proceedings of the 7th World Hydrogen Energy Conference, V2, P885
[10]  
Bui M, 2018, ENERG ENVIRON SCI, V11, P1062, DOI [10.1039/c7ee02342a, 10.1039/C7EE02342A]