Crystal structure, thermal expansion and electrical conductivity of Pr(Ga1-xCox)0.9Mg0.1O3-δ (x=0, 0.1, 0.2, 0.3)

被引:1
|
作者
Ren Zhihua [1 ,2 ]
Yan Baijun [1 ]
Liu Jianhua [1 ]
Zhang Jiayun [1 ]
机构
[1] Univ Sci & Technol Beijing, Dept Phys Chem Met, Beijing 10083, Peoples R China
[2] Qingdao Univ Sci & Technol, Sch Chem Engn, Qingdao 266042, Peoples R China
基金
中国国家自然科学基金;
关键词
praseodymium gallate; perovskites; electrical properties; crystal structure; thermal expansion; rare earths;
D O I
10.1016/S1002-0721(08)60090-3
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Pr(Ga1-xCox)(0.9)Mg0.1O3-delta(x=0, 0.1, 0.2, 0.3) was synthesized using solid-state reaction technique to study the effects of Co doping on their structure and properties. Room and high temperature XRD, DSC and electrical conductivity measurement with D.C. four-probe technique were adopted in the study. ne results indicated its orthorhombic-distorted perovskite structure at room temperature. PrGa0.9Mg0.1O3-delta maintained its orthorhombic-distorted structure between 298 and 1173 K. For Pr(Ga0.7Co0.3)(0.9)Mg0.1O3-delta, such structure existed below 873 K. From 873 to 1173 K, it possessed tetragonal structure. The transformation from orthorhombic to tetragonal structure at 873 K was of second order. The intrinsic volume thermal expansion of tetragonal structured Pr(Ga0.7Co0.3)(0.9)Mg0.1O3-delta was about 50% higher than those of PrGa(0.9)gMg(0.1)O(3-delta). The electrical conductivity increased with Co content. The activation energies of conduction for Pr(Ga1-xCox)(0.9)Mg0.1O3-delta are in range from 0.197 to 0.246 eV, much lower than 1.543 eV for PrGaO3.
引用
收藏
页码:331 / 336
页数:6
相关论文
共 50 条
  • [41] Crystal structure, thermal expansion and electrical conductivity of dual-phase Gd0.8Sr0.2Co1-yFeyO3-δ (0≤y≤1.0)
    Dyck, CR
    Peterson, RC
    Yu, ZB
    Krstic, VD
    SOLID STATE IONICS, 2005, 176 (1-2) : 103 - 108
  • [42] Synthesis, crystal structure, Mossbauer spectra and dielectric property of La1-xSrxFe1-xTixO3 (x=0, 0.1, 0.3, 0.5, 0.7, 1)
    Song, YW
    Ma, Y
    Xiong, H
    Jia, YQ
    Liu, ML
    Jin, MZ
    MATERIALS CHEMISTRY AND PHYSICS, 2003, 78 (03) : 660 - 665
  • [43] Crystal structure and thermal expansion of LaCr1-xMgxO3, 0 < x ≤ 0.25
    Istomin, S. Ya.
    Kurlov, A. V.
    Kazakov, S. M.
    Antipov, E. V.
    MATERIALS RESEARCH BULLETIN, 2012, 47 (05) : 1176 - 1180
  • [44] Influence of synthesis route on physicochemical properties of nanostructured electrolyte material La0.9Sr0.1Ga0.8Mg0.2O3−δ for IT-SOFCs
    Nityanand Chaubey
    B. N. Wani
    S. R. Bharadwaj
    M. C. Chattopadhyaya
    Journal of Thermal Analysis and Calorimetry, 2013, 112 : 155 - 164
  • [45] Phase interaction and oxygen transport in La0.8Sr0.2Fe0.8Co0.2O3 (La0.9Sr0.1)0.98Ga0.8Mg0.2O3 composites
    Shaula, AL
    Kharton, VV
    Marques, FMB
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2004, 24 (09) : 2631 - 2639
  • [46] Identification of the Domain Walls Configuration in the Ferroelastic Nanosize Material La0.95Sr0.05Ga0.9Mg0.1O3-x
    Savytskii, D.
    Paulmann, C.
    Bismayer, U.
    Berkowski, M.
    ACTA PHYSICA POLONICA A, 2010, 117 (01) : 62 - 73
  • [47] Electron spin resonance study of the magnetic states in the Pr0.2Sr0.8Mn1-xRuxO3 (x=0, 0.1)
    Autret, C
    Gervais, M
    Roger, S
    Gervais, F
    Raimboux, N
    Simon, P
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2005, 25 (12) : 3033 - 3036
  • [48] Influence of synthesis route on physicochemical properties of nanostructured electrolyte material La0.9Sr0.1Ga0.8Mg0.2O3-δ for IT-SOFCs
    Chaubey, Nityanand
    Wani, B. N.
    Bharadwaj, S. R.
    Chattopadhyaya, M. C.
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2013, 112 (01) : 155 - 164
  • [49] Structure, electrical, and thermal expansion properties of (La0.8Ca0.2)(Cr0.9-xCo0.1Nix)O3-δ interconnect materials for intermediate temperature solid oxide fuel cells
    Fu, Yen-Pei
    Wang, Hsin-Chao
    JOURNAL OF MATERIALS RESEARCH, 2009, 24 (05) : 1748 - 1755
  • [50] Electrochemical Characterization of La0.9Sr0.1Ga0.8Mg0.2O3-δ Thin Film Electrolyte Deposited by Radio Frequency Magnetron Sputtering
    Endo, Y.
    Terai, T.
    Suzuki, A.
    SOLID STATE IONIC DEVICES 10, 2014, 64 (02): : 183 - 189