In unstimulated mammary epithelial cells from virgin mice, the prolactin receptor exists as two isoforms: a 78 and a 70 kDa species. Both proteins are reduced to a single 61 kDa molecule after N-glycanase F treatment, indicating that their size difference is solely a result of carbohydrate content. Membrane fractionation experiments reveal that the smaller species is exclusively intracellular, while the larger one is located on the cell surface. Nitric oxide (NO) stimulates the migration of prolactin receptors from an internal pool to the plasmalemma in only 30 min and this redistribution is associated with an increase in molecular weight. Redistribution is blocked by swainsonine, but not by castanospermine or I-deoxymannojirimycin, suggesting that the glycosylation step involved with translocation is either a-mannosidase II or N-acetylglucosamine (NAG) transferase I. The former is unaffected by NO but the activity of the latter is doubled 30 min after exposure to NO. These data suggest that prolactin receptors are retained intracellularly because of their incomplete N-glycosylation and that NO triggers their redistribution by stimulating the completion of this process, in part by increasing NAG transferase I activity. (C) 1999 Elsevier Science Ireland Ltd. All rights reserved.