A Modified Discontinuous Galerkin Method for Solving Efficiently Helmholtz Problems

被引:6
作者
Grigoroscuta-Strugaru, Magdalena [2 ,3 ,4 ]
Amara, Mohamed [2 ,3 ]
Calandra, Henri [5 ]
Djellouli, Rabia [1 ]
机构
[1] Calif State Univ Northridge, Dept Math, Northridge, CA 91330 USA
[2] Univ Pau & Pays Adour, INRIA Bordeaux Sud Ouest Res Ctr, Team Project Magique 3D, Pau, France
[3] Univ Pau & Pays Adour, LMA CNRS, UMR 5142, Pau, France
[4] Basque Ctr Appl Math, BCAM, Bilbao, Spain
[5] TOTAL, Pau, France
关键词
Helmholtz equation; discontinuous Galerkin; plane waves; Lagrange multipliers; inf-sup condition; waveguide problems; LAGRANGE MULTIPLIERS; PLANE-WAVES; EQUATION; SYSTEMS;
D O I
10.4208/cicp.081209.070710s
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A new solution methodology is proposed for solving efficiently Helmholtz problems. The proposed method falls in the category of the discontinuous Galerkin methods. However, unlike the existing solution methodologies, this method requires solving (a) well-posed local problems to determine the primal variable, and (b) a global positive semi-definite Hermitian system to evaluate the Lagrange multiplier needed to restore the continuity across the element edges. Illustrative numerical results obtained for two-dimensional interior Helmholtz problems are presented to assess the accuracy and the stability of the proposed solution methodology.
引用
收藏
页码:335 / 350
页数:16
相关论文
共 50 条
[31]   High-order/hp-adaptive discontinuous Galerkin finite element methods for acoustic problems [J].
Giani, Stefano .
COMPUTING, 2013, 95 (01) :S215-S234
[32]   A hybrid discontinuous Galerkin method for computing the ground state solution of Bose-Einstein condensates [J].
Farhat, Charbel ;
Toivanen, Jari .
JOURNAL OF COMPUTATIONAL PHYSICS, 2012, 231 (14) :4709-4722
[33]   Analysis of the discontinuous Galerkin method for elliptic problems on surfaces [J].
Dedner, Andreas ;
Madhavan, Pravin ;
Stinner, Bjoern .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2013, 33 (03) :952-973
[34]   A hybridizable direct discontinuous Galerkin method for elliptic problems [J].
Huiqiang Yue ;
Jian Cheng ;
Tiegang Liu ;
Vladimir Shaydurov .
Boundary Value Problems, 2016
[35]   AN ADAPTIVE DISCONTINUOUS GALERKIN MULTISCALE METHOD FOR ELLIPTIC PROBLEMS [J].
Elfverson, Daniel ;
Georgoulis, Emmanuil H. ;
Malqvist, Axel .
MULTISCALE MODELING & SIMULATION, 2013, 11 (03) :747-765
[36]   A hybridizable discontinuous Galerkin method for fractional diffusion problems [J].
Cockburn, Bernardo ;
Mustapha, Kassem .
NUMERISCHE MATHEMATIK, 2015, 130 (02) :293-314
[37]   A Hybridizable and Superconvergent Discontinuous Galerkin Method for Biharmonic Problems [J].
Cockburn, Bernardo ;
Dong, Bo ;
Guzman, Johnny .
JOURNAL OF SCIENTIFIC COMPUTING, 2009, 40 (1-3) :141-187
[38]   A hybridizable direct discontinuous Galerkin method for elliptic problems [J].
Yue, Huiqiang ;
Cheng, Jian ;
Liu, Tiegang ;
Shaydurov, Vladimir .
BOUNDARY VALUE PROBLEMS, 2016,
[39]   The discontinuous Petrov-Galerkin method for elliptic problems [J].
Bottasso, CL ;
Micheletti, S ;
Sacco, R .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2002, 191 (31) :3391-3409
[40]   Palindromic Discontinuous Galerkin Method [J].
Coulette, David ;
Franck, Emmanuel ;
Helluy, Philippe ;
Mehrenberger, Michel ;
Navoret, Laurent .
FINITE VOLUMES FOR COMPLEX APPLICATIONS VIII-HYPERBOLIC, ELLIPTIC AND PARABOLIC PROBLEMS, 2017, 200 :171-178