A Modified Discontinuous Galerkin Method for Solving Efficiently Helmholtz Problems

被引:6
作者
Grigoroscuta-Strugaru, Magdalena [2 ,3 ,4 ]
Amara, Mohamed [2 ,3 ]
Calandra, Henri [5 ]
Djellouli, Rabia [1 ]
机构
[1] Calif State Univ Northridge, Dept Math, Northridge, CA 91330 USA
[2] Univ Pau & Pays Adour, INRIA Bordeaux Sud Ouest Res Ctr, Team Project Magique 3D, Pau, France
[3] Univ Pau & Pays Adour, LMA CNRS, UMR 5142, Pau, France
[4] Basque Ctr Appl Math, BCAM, Bilbao, Spain
[5] TOTAL, Pau, France
关键词
Helmholtz equation; discontinuous Galerkin; plane waves; Lagrange multipliers; inf-sup condition; waveguide problems; LAGRANGE MULTIPLIERS; PLANE-WAVES; EQUATION; SYSTEMS;
D O I
10.4208/cicp.081209.070710s
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A new solution methodology is proposed for solving efficiently Helmholtz problems. The proposed method falls in the category of the discontinuous Galerkin methods. However, unlike the existing solution methodologies, this method requires solving (a) well-posed local problems to determine the primal variable, and (b) a global positive semi-definite Hermitian system to evaluate the Lagrange multiplier needed to restore the continuity across the element edges. Illustrative numerical results obtained for two-dimensional interior Helmholtz problems are presented to assess the accuracy and the stability of the proposed solution methodology.
引用
收藏
页码:335 / 350
页数:16
相关论文
共 50 条
[21]   Error Analysis for a Hybridizable Discontinuous Galerkin Method for the Helmholtz Equation [J].
Roland Griesmaier ;
Peter Monk .
Journal of Scientific Computing, 2011, 49 :291-310
[22]   A discontinuous Petrov-Galerkin (DPG) formulation for the FEM applied to the Helmholtz equation for high wavenumbers [J].
Dias, R. ;
do Carmo, E. G. D. ;
Mansur, W. J. ;
Monteiro, C. S. G. .
JOURNAL OF THE BRAZILIAN SOCIETY OF MECHANICAL SCIENCES AND ENGINEERING, 2017, 39 (05) :1529-1544
[23]   A HYBRID DISCONTINUOUS GALERKIN METHOD FOR ELLIPTIC PROBLEMS [J].
Jeon, Youngmok ;
Park, Eun-Jae .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2010, 48 (05) :1968-1983
[24]   A HYBRIDIZABLE DISCONTINUOUS GALERKIN METHOD FOR THE HELMHOLTZ EQUATION WITH HIGH WAVE NUMBER [J].
Chen, Huangxin ;
Lu, Peipei ;
Xu, Xuejun .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2013, 51 (04) :2166-2188
[25]   A high-order discontinuous Galerkin method for extension problems [J].
Utz, Thomas ;
Kummer, Florian .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2018, 86 (08) :509-518
[26]   A Modified Fourier–Galerkin Method for the Poisson and Helmholtz Equations [J].
Ole F. Næss ;
Knut S. Eckhoff .
Journal of Scientific Computing, 2002, 17 :529-539
[27]   A priori error analysis of space-time Trefftz discontinuous Galerkin methods for wave problems [J].
Kretzschmar, Fritz ;
Moiola, Andrea ;
Perugia, Ilaria ;
Schnepp, Sascha M. .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2016, 36 (04) :1599-1635
[28]   A high-order discontinuous Galerkin method for unsteady advection-diffusion problems [J].
Borker, Raunak ;
Farhat, Charbel ;
Tezaur, Radek .
JOURNAL OF COMPUTATIONAL PHYSICS, 2017, 332 :520-537
[29]   A space-time discontinuous Galerkin method for the solution of the wave equation in the time domain [J].
Petersen, Steffen ;
Farhat, Charbel ;
Tezaur, Radek .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2009, 78 (03) :275-295
[30]   A Trefftz-discontinuous Galerkin method for time-harmonic elastic wave problems [J].
Yuan, Long ;
Liu, Yang .
COMPUTATIONAL & APPLIED MATHEMATICS, 2019, 38 (03)