Genome-edited crops: how to move them from laboratory to market

被引:10
作者
Chen, Kunling [1 ]
Gao, Caixia [1 ,2 ]
机构
[1] Chinese Acad Sci, State Key Lab Plant Cell & Chromosome Engn, Inst Genet & Dev Biol, Ctr Genome Editing,Innovat Acad Seed Design, Beijing 100101, Peoples R China
[2] Univ Chinese Acad Sci, Coll Adv Agr Sci, Beijing 100101, Peoples R China
基金
中国国家自然科学基金;
关键词
CRISPR/Cas; genome editing; base editing; precision breeding; regulation; REGULATORY FRAMEWORK; HOMOLOGOUS RECOMBINATION; RAPID IMPROVEMENT; PLANTS; MULTIPLEX; LANDSCAPE; RNA;
D O I
10.15302/J-FASE-2020332
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Recent breakthroughs in CRISPR technology allow specific genome manipulation of almost all crops and have initiated a revolution in precision crop breeding. Rationally-based regulation and widespread public acceptance are needed to propel genome-edited crops from laboratory to market and to translate this innovative technology into agricultural productivity.
引用
收藏
页码:181 / 187
页数:7
相关论文
共 38 条
  • [21] Bottlenecks for genome-edited crops on the road from lab to farm
    Scheben, Armin
    Edwards, David
    [J]. GENOME BIOLOGY, 2018, 19
  • [22] Towards CRISPR/Cas crops - bringing together genomics and genome editing
    Scheben, Armin
    Wolter, Felix
    Batley, Jacqueline
    Puchta, Holger
    Edwards, David
    [J]. NEW PHYTOLOGIST, 2017, 216 (03) : 682 - 698
  • [23] Targeted genome modification of crop plants using a CRISPR-Cas system
    Shan, Qiwei
    Wang, Yanpeng
    Li, Jun
    Zhang, Yi
    Chen, Kunling
    Liang, Zhen
    Zhang, Kang
    Liu, Jinxing
    Xi, Jianzhong Jeff
    Qiu, Jin-Long
    Gao, Caixia
    [J]. NATURE BIOTECHNOLOGY, 2013, 31 (08) : 686 - 688
  • [24] ARGOS8 variants generated by CRISPR-Cas9 improve maize grain yield under field drought stress conditions
    Shi, Jinrui
    Gao, Huirong
    Wang, Hongyu
    Lafitte, H. Renee
    Archibald, Rayeann L.
    Yang, Meizhu
    Hakimi, Salim M.
    Mo, Hua
    Habben, Jeffrey E.
    [J]. PLANT BIOTECHNOLOGY JOURNAL, 2017, 15 (02) : 207 - 216
  • [25] Canadian regulatory perspectives on genome engineered crops
    Smyth, Stuart J.
    [J]. GM CROPS & FOOD-BIOTECHNOLOGY IN AGRICULTURE AND THE FOOD CHAIN, 2017, 8 (01): : 35 - 43
  • [26] Engineering Herbicide-Resistant Rice Plants through CRISPR/Cas9-Mediated Homologous Recombination of Acetolactate Synthase
    Sun, Yongwei
    Zhang, Xin
    Wu, Chuanyin
    He, Yubing
    Ma, Youzhi
    Hou, Han
    Guo, Xiuping
    Du, Wenming
    Zhao, Yunde
    Xia, Lanqin
    [J]. MOLECULAR PLANT, 2016, 9 (04) : 628 - 631
  • [27] Genome editing in maize directed by CRISPR-Cas9 ribonucleoprotein complexes
    Svitashev, Sergei
    Schwartz, Christine
    Lenderts, Brian
    Young, Joshua K.
    Cigan, A. Mark
    [J]. NATURE COMMUNICATIONS, 2016, 7
  • [28] USDA, 2018, Press release No. 0070.18
  • [29] Clonal seeds from hybrid rice by simultaneous genome engineering of meiosis and fertilization genes
    Wang, Chun
    Liu, Qing
    Shen, Yi
    Hua, Yufeng
    Wang, Junjie
    Lin, Jianrong
    Wu, Mingguo
    Sun, Tingting
    Cheng, Zhukuan
    Mercier, Raphael
    Wang, Kejian
    [J]. NATURE BIOTECHNOLOGY, 2019, 37 (03) : 283 - +
  • [30] Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew
    Wang, Yanpeng
    Cheng, Xi
    Shan, Qiwei
    Zhang, Yi
    Liu, Jinxing
    Gao, Caixia
    Qiu, Jin-Long
    [J]. NATURE BIOTECHNOLOGY, 2014, 32 (09) : 947 - 951