Stability properties of divergence-free vector fields

被引:23
作者
Ferreira, Celia [1 ]
机构
[1] Univ Porto, Dept Matemat, P-4169007 Oporto, Portugal
来源
DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL | 2012年 / 27卷 / 02期
关键词
divergence-free vector field; Anosov vector field; dominated splitting; structurally stable vector field; heterodimensional cycle; HOMOCLINIC TANGENCIES; UNIFORM HYPERBOLICITY; SATISFY AXIOM; STAR FLOWS; SYSTEMS;
D O I
10.1080/14689367.2012.655710
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A divergence-free vector field satisfies the star property if any divergence-free vector field in some C-1-neighbourhood has all singularities and all closed orbits hyperbolic. In this article, we prove that any divergence-free vector field defined on a Riemannian manifold and satisfying the star property is Anosov. It is also shown that a C-1-structurally stable divergence-free vector field is Anosov. Moreover, we prove that any divergence-free vector field can be C-1-approximated by an Anosov divergence-free vector field, or else by a divergence-free vector field exhibiting a heterodimensional cycle.
引用
收藏
页码:223 / 238
页数:16
相关论文
共 40 条
[1]  
Andronov A., 1937, Doklady Akademii Nauk SSSR., V14, P247
[2]  
[Anonymous], 1995, Hyperbolicity and Sensitive Chaotic Dynamics at Homoclinic Bifurcations: Fractal Dimensions and Infinitely Many Attractors in Dynamics
[3]   A pasting lemma and some applications for conservative systems [J].
Arbieto, Alexander ;
Matheus, Carlos .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2007, 27 :1399-1417
[4]  
ARNAUD M.-C., 1998, MEM SOC MATH FR, V74, P1
[5]   Homoclinic bifurcations and uniform hyperbolicity for three-dimensional flows [J].
Arroyo, A ;
Hertz, FR .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2003, 20 (05) :805-841
[6]  
Bessa M., 2012, EXPANSIVENESS SPECIF
[7]   On C1-robust transitivity of volume-preserving flows [J].
Bessa, Mario ;
Rocha, Jorge .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2008, 245 (11) :3127-3143
[8]   A generic incompressible flow is topological mixing [J].
Bessa, Mario .
COMPTES RENDUS MATHEMATIQUE, 2008, 346 (21-22) :1169-1174
[9]   On the stability of the set of hyperbolic closed orbits of a Hamiltonian [J].
Bessa, Mario ;
Ferreira, Celia ;
Rocha, Jorge .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2010, 149 :373-383
[10]   THREE-DIMENSIONAL CONSERVATIVE STAR FLOWS ARE ANOSOV [J].
Bessa, Mario ;
Rocha, Jorge .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2010, 26 (03) :839-846