Stability properties of divergence-free vector fields

被引:24
作者
Ferreira, Celia [1 ]
机构
[1] Univ Porto, Dept Matemat, P-4169007 Oporto, Portugal
来源
DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL | 2012年 / 27卷 / 02期
关键词
divergence-free vector field; Anosov vector field; dominated splitting; structurally stable vector field; heterodimensional cycle; HOMOCLINIC TANGENCIES; UNIFORM HYPERBOLICITY; SATISFY AXIOM; STAR FLOWS; SYSTEMS;
D O I
10.1080/14689367.2012.655710
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A divergence-free vector field satisfies the star property if any divergence-free vector field in some C-1-neighbourhood has all singularities and all closed orbits hyperbolic. In this article, we prove that any divergence-free vector field defined on a Riemannian manifold and satisfying the star property is Anosov. It is also shown that a C-1-structurally stable divergence-free vector field is Anosov. Moreover, we prove that any divergence-free vector field can be C-1-approximated by an Anosov divergence-free vector field, or else by a divergence-free vector field exhibiting a heterodimensional cycle.
引用
收藏
页码:223 / 238
页数:16
相关论文
共 40 条
  • [1] Andronov A., 1937, Doklady Akademii Nauk SSSR., V14, P247
  • [2] [Anonymous], 1995, Hyperbolicity and Sensitive Chaotic Dynamics at Homoclinic Bifurcations: Fractal Dimensions and Infinitely Many Attractors in Dynamics
  • [3] A pasting lemma and some applications for conservative systems
    Arbieto, Alexander
    Matheus, Carlos
    [J]. ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2007, 27 : 1399 - 1417
  • [4] ARNAUD M.-C., 1998, MEM SOC MATH FR, V74, P1
  • [5] Homoclinic bifurcations and uniform hyperbolicity for three-dimensional flows
    Arroyo, A
    Hertz, FR
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2003, 20 (05): : 805 - 841
  • [6] Bessa M., 2012, EXPANSIVENESS SPECIF
  • [7] On C1-robust transitivity of volume-preserving flows
    Bessa, Mario
    Rocha, Jorge
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2008, 245 (11) : 3127 - 3143
  • [8] A generic incompressible flow is topological mixing
    Bessa, Mario
    [J]. COMPTES RENDUS MATHEMATIQUE, 2008, 346 (21-22) : 1169 - 1174
  • [9] On the stability of the set of hyperbolic closed orbits of a Hamiltonian
    Bessa, Mario
    Ferreira, Celia
    Rocha, Jorge
    [J]. MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2010, 149 : 373 - 383
  • [10] THREE-DIMENSIONAL CONSERVATIVE STAR FLOWS ARE ANOSOV
    Bessa, Mario
    Rocha, Jorge
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2010, 26 (03) : 839 - 846