An Efficient Sparse Representation Algorithm for Direction-of-Arrival Estimation

被引:0
作者
Sun, Lei [1 ]
Wang, Huali [1 ]
Xu, Guangjie [1 ]
机构
[1] PLA Univ Sci & Tech, Coll Commun Engn, Nanjing, Jiangsu, Peoples R China
关键词
Direction-of-arrival (DOA) estimation; uniform linear array; sparse representation; sparse Bayesian learning; DOA ESTIMATION; RECOVERY; ESPRIT;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper presents an efficient sparse representation approach to direction-of-arrival (DOA) estimation using uniform linear arrays. The proposed approach constructs the jointly sparse model in real domain by exploiting the properties of centro-Hermitian matrices. Subsequently, DOA estimation is realized via the sparse Bayesian learning (SBL) algorithm. Further, the pruning threshold of SBL is adaptively selected to speed up the basis pruning rate. Simulation results demonstrate that the proposed approach achieves an improved performance and enjoys computational efficiency as compared to the state-of-the-art l(1)-norm-based DOA estimators especially in scenarios with small sample size and low signal-to-noise ratio.
引用
收藏
页码:834 / 840
页数:7
相关论文
共 50 条
  • [31] Direction-of-Arrival Estimation for Coherent Sources via Sparse Bayesian Learning
    Liu, Zhang-Meng
    Liu, Zheng
    Feng, Dao-Wang
    Huang, Zhi-Tao
    [J]. INTERNATIONAL JOURNAL OF ANTENNAS AND PROPAGATION, 2014, 2014
  • [32] Robust Variational Bayesian Inference for Direction-of-Arrival Estimation With Sparse Array
    Liu, Ying
    Zhang, Zongyu
    Zhou, Chengwei
    Yan, Chenggang
    Shi, Zhiguo
    [J]. IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2022, 71 (08) : 8591 - 8602
  • [33] DIRECTION-OF-ARRIVAL ESTIMATION FOR COHERENT SOURCES VIA SPARSE BAYESIAN LEARNING
    Lu, Zhongguo
    Yu, Jing
    Zhang, Shunsheng
    Hu, Xianyang
    Wang, Wenqin
    [J]. 2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 4286 - 4289
  • [34] Application of Sparse Representation to Bartlett Spectra for Improved Direction of Arrival Estimation
    Compaleo, Jacob
    Gupta, Inder J.
    [J]. SENSORS, 2021, 21 (01) : 1 - 18
  • [35] A Unified Framework and Sparse Bayesian Perspective for Direction-of-Arrival Estimation in the Presence of Array Imperfections
    Liu, Zhang-Meng
    Zhou, Yi-Yu
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2013, 61 (15) : 3786 - 3798
  • [36] Direction-of-Arrival Estimation for a Random Sparse Linear Array Based on a Graph Neural Network
    Yang, Yiye
    Zhang, Miao
    Peng, Shihua
    Ye, Mingkun
    Zhang, Yixiong
    [J]. SENSORS, 2024, 24 (01)
  • [37] Two sparse-based methods for off-grid direction-of-arrival estimation
    Wu, Xiaohuan
    Zhu, Wei-Ping
    Yan, Jun
    Zhang, Zeyun
    [J]. SIGNAL PROCESSING, 2018, 142 : 87 - 95
  • [38] IRELAX: Interpolated RELAX Algorithm for Enhanced Direction-of-Arrival Estimation
    Ahmad, Fauzia
    Amin, Moeness G.
    [J]. 2024 IEEE RADAR CONFERENCE, RADARCONF 2024, 2024,
  • [39] An Analytical Direction-of-Arrival Algorithm Based on the Estimation of Rotation Matrix
    Xu X.-F.
    Duan C.-D.
    Liu L.-J.
    Yang X.-J.
    [J]. 1600, Chinese Institute of Electronics (45): : 1012 - 1017
  • [40] A new nested array for direction-of-arrival estimation
    Li, Zhenghan
    Huang, Huiping
    Liao, Bin
    [J]. MULTIDIMENSIONAL SYSTEMS AND SIGNAL PROCESSING, 2020, 31 (02) : 663 - 672