Modeling flow of nematic liquid crystal down an incline

被引:9
|
作者
Lam, M. A. [1 ,2 ]
Cummings, L. J. [1 ,2 ]
Lin, T. -S. [3 ]
Kondic, L. [1 ,2 ]
机构
[1] New Jersey Inst Technol, Dept Math Sci, Newark, NJ 07102 USA
[2] New Jersey Inst Technol, Ctr Appl Math & Stat, Newark, NJ 07102 USA
[3] Univ Loughborough, Dept Math Sci, Loughborough LE11 3TU, Leics, England
基金
美国国家科学基金会;
关键词
Inclined plane; Liquid crystal; Nematic; Thin film; FINGERING INSTABILITIES; ISOTROPIC TRANSITION; FILMS; MORPHOLOGY; STABILITY;
D O I
10.1007/s10665-014-9697-2
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The flow of nematic liquid crystals down an inclined substrate is studied. Under the usual long wave approximation, a fourth-order nonlinear parabolic partial differential equation of the diffusion type is derived for the free surface height. The model accounts for elastic distortions of the director field due to different anchoring conditions at the substrate and the free surface. The partial differential equation we derive admits 2D traveling-wave solutions, which may translate stably or exhibit instabilities in the flat film behind the traveling front. These instabilities, which are distinct from the usual transverse instability of downslope flow, may be analyzed and explained by linear stability analysis of a flat translating film. Intriguing parallels are found with the instabilities exhibited by Newtonian fluid flowing on an inverted substrate and Newtonian fluid flow outside a vertical cylinder.
引用
收藏
页码:97 / 113
页数:17
相关论文
共 50 条
  • [1] Modeling flow of nematic liquid crystal down an incline
    M. A. Lam
    L. J. Cummings
    T.-S. Lin
    L. Kondic
    Journal of Engineering Mathematics, 2015, 94 : 97 - 113
  • [2] FLOW OF A VISCOUS-LIQUID DOWN A VARIABLE INCLINE
    MERKIN, JH
    JOURNAL OF ENGINEERING MATHEMATICS, 1973, 7 (04) : 319 - 326
  • [3] MODELING A NEMATIC LIQUID-CRYSTAL
    PATNAIK, SS
    PLIMPTON, SJ
    PACHTER, R
    ADAMS, WW
    LIQUID CRYSTALS, 1995, 19 (02) : 213 - 220
  • [4] Dynamics of defect motion in nematic liquid crystal flow: Modeling and numerical simulation
    Liu, Chun
    Shen, Jie
    Yang, Xiaofeng
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2007, 2 (06) : 1184 - 1198
  • [5] Nematic liquid crystal in oscillatory Poiseuille flow
    Tarasov, OS
    Krekhov, AP
    CRYSTALLOGRAPHY REPORTS, 1998, 43 (03) : 476 - 482
  • [6] Transitions in Poiseuille flow of nematic liquid crystal
    Anderson, T. G.
    Mema, E.
    Kondic, L.
    Cummings, L. J.
    INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2015, 75 : 15 - 21
  • [7] Dynamics and stability of flow down a flexible incline
    Matar, Omar K.
    Kumar, Satish
    JOURNAL OF ENGINEERING MATHEMATICS, 2007, 57 (02) : 145 - 158
  • [8] DIFFUSION TO FLOW DOWN AN INCLINE WITH SURFACE RESISTANCE
    TAMIR, A
    TAITEL, Y
    CHEMICAL ENGINEERING SCIENCE, 1971, 26 (06) : 799 - &
  • [9] Strong solutions of the compressible nematic liquid crystal flow
    Huang, Tao
    Wang, Changyou
    Wen, Huanyao
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 252 (03) : 2222 - 2265
  • [10] Nematic Liquid Crystal Flow with Partially Free Boundary
    Fanghua Lin
    Yannick Sire
    Juncheng Wei
    Yifu Zhou
    Archive for Rational Mechanics and Analysis, 2023, 247