Periodic Structures Based on the Symmetrical Lucas Function of the (2+1)-Dimensional Dispersive Long-Wave System

被引:16
作者
Abdel-Salam, Emad A. -B. [1 ]
机构
[1] Assiut Univ, Dept Math, New Valley Fac Educ, El Khargah, New Valley, Egypt
来源
ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES | 2008年 / 63卷 / 10-11期
关键词
Lucas Functions; Variable Separation Excitations; DLW System; Periodic Structure;
D O I
10.1515/zna-2008-10-1110
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
By introducing the Lucas Riccati method and a linear variable separation method, new variable separation solutions with arbitrary functions are derived for a (2+1)-dimensional dispersive long-wave system. The main idea of this method is to express the solutions of this system as polynomials in the solution of the Riccati equation that satisfies the symmetrical Lucas functions. From the variable separation solution and by selecting appropriate functions, some novel Jacobian elliptic wave structures and periodic wave evolutional behaviours:S are investigated.
引用
收藏
页码:671 / 678
页数:8
相关论文
共 31 条
[1]   Interactions among different types of solitary waves in (2+1)-dimensional system [J].
Bai, CF ;
Bai, CJ ;
Zhao, H .
CHAOS SOLITONS & FRACTALS, 2005, 25 (02) :481-490
[2]   The structures and interactions of solitary waves in the (2+1)-dimensional nonlinear Schrodinger equation [J].
Bai, Cheng-Lin ;
Zhao, Hong ;
Wang, Xiao-Yuan .
NONLINEARITY, 2006, 19 (08) :1697-1712
[3]   Interactions among periodic waves and solitary waves for a higher dimensional system [J].
Bai, Cheng-Lin ;
Zhao, Hong .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (13) :3283-3293
[4]  
Bai CL, 2006, CHINESE J PHYS, V44, P94
[5]  
Bai CL, 2005, CHINESE J PHYS, V43, P400
[6]  
Bai CL, 2005, CHINESE PHYS, V14, P285, DOI 10.1088/1009-1963/14/2/012
[7]   Folded localized excitations of the (2+1)-dimensional (M+N)-component AKNS system [J].
Bai, CL ;
Zhao, H .
EUROPEAN PHYSICAL JOURNAL B, 2004, 42 (04) :581-589
[8]   A novel class of localized excitations for the (2+1)-dimensional higher-order Broer-Kaup system [J].
Bai, CL ;
Zhao, H .
ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2004, 59 (7-8) :412-424
[9]  
Bai CL, 2004, Z NATURFORSCH A, V59, P729
[10]   SPECTRAL TRANSFORM FOR A 2-SPATIAL DIMENSION EXTENSION OF THE DISPERSIVE LONG-WAVE EQUATION [J].
BOITI, M ;
LEON, JJP ;
PEMPINELLI, F .
INVERSE PROBLEMS, 1987, 3 (03) :371-387