Global Axisymmetric Solutions of Three Dimensional Inhomogeneous Incompressible Navier-Stokes System with Nonzero Swirl

被引:16
作者
Chen, Hui [1 ]
Fang, Daoyuan [1 ]
Zhang, Ting [1 ]
机构
[1] Zhejiang Univ, Dept Math, Hangzhou 310027, Zhejiang, Peoples R China
关键词
AXIALLY-SYMMETRIC FLOWS; VISCOUS FLUIDS; EQUATIONS; REGULARITY; DENSITY; CRITERION; ENERGY;
D O I
10.1007/s00205-016-1046-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we investigate the global well-posedness for the three dimensional inhomogeneous incompressible Navier-Stokes system with axisymmetric initial data. We obtain the global existence and uniqueness of the axisymmetric solution provided that parallel to a(0)/r parallel to(infinity) and parallel to u(0)(theta)parallel to(3) are sufficiently small. Furthermore, if u(0) is an element of L-1 and ru(0)(theta) is an element of L-1 boolean AND L-2, we have the decay estimate parallel to u(theta)(t)parallel to(2)(2) + < t > parallel to del(u(theta)e(theta))(t)parallel to(2)(2) + t < t >(parallel to u(t)(theta)(t)parallel to(2)(2) + parallel to Delta(u(theta)e(theta))(t)parallel to(2)(2)) <= C < t >(-5/2), (sic) t > 0.
引用
收藏
页码:817 / 843
页数:27
相关论文
共 22 条
[1]   Global smooth axisymmetric solutions of 3-D inhomogeneous incompressible Navier-Stokes system [J].
Abidi, Hammadi ;
Zhang, Ping .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2015, 54 (03) :3251-3276
[2]   On the Wellposedness of Three-Dimensional Inhomogeneous Navier-Stokes Equations in the Critical Spaces [J].
Abidi, Hammadi ;
Gui, Guilong ;
Zhang, Ping .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2012, 204 (01) :189-230
[3]  
[Anonymous], 1996, OXFORD LECT SERIEM
[4]   On the regularity of the axisymmetric solutions of the Navier-Stokes equations [J].
Chae, D ;
Lee, J .
MATHEMATISCHE ZEITSCHRIFT, 2002, 239 (04) :645-671
[5]  
Chen H., ARXIV150500905
[6]  
Danchin R., 2006, Annales de la Faculte des Sciences de Toulouse, Mathematiques, V15, P637, DOI 10.5802/afst.1133
[7]  
Danchin R, 2004, ADV DIFFERENTIAL EQU, V9, P353
[8]   A Lagrangian Approach for the Incompressible Navier-Stokes Equations with Variable Density [J].
Danchin, Raphael ;
Mucha, Piotr Boguslaw .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2012, 65 (10) :1458-1480
[9]   A blow-up criterion for the nonhomogeneous incompressible Navier-Stokes equations [J].
Kim, H .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2006, 37 (05) :1417-1434
[10]  
LADYZENSKAJA O. A., 1975, SEM LENINGRAD OTDEL, V52, P52