Additive manufacturing of silica aerogels

被引:510
作者
Zhao, Shanyu [1 ]
Siqueira, Gilberto [2 ]
Drdova, Sarka [3 ,4 ]
Norris, David [1 ]
Ubert, Christopher [1 ]
Bonnin, Anne [5 ]
Galmarini, Sandra [1 ]
Ganobjak, Michal [1 ,6 ]
Pan, Zhengyuan [3 ,7 ]
Brunner, Samuel [1 ]
Nystroem, Gustav [2 ,8 ]
Wang, Jing [3 ,4 ]
Koebel, Matthias M. [1 ]
Malfait, Wim J. [1 ]
机构
[1] Empa, Swiss Fed Labs Mat Sci & Technol, Lab Bldg Energy Mat & Components, Dubendorf, Switzerland
[2] Empa, Swiss Fed Labs Mat Sci & Technol, Cellulose & Wood Mat Lab, Dubendorf, Switzerland
[3] Swiss Fed Inst Technol, Inst Environm Engn, Zurich, Switzerland
[4] Empa, Swiss Fed Labs Mat Sci & Technol, Lab Adv Analyt Technol, Dubendorf, Switzerland
[5] Paul Scherrer Inst, Swiss Light Source, Villigen, Switzerland
[6] Slovak Univ Technol Bratislava, Fac Architecture, Bratislava, Slovakia
[7] South China Univ Technol, State Key Lab Pulp & Paper Engn, Guangzhou, Peoples R China
[8] Swiss Fed Inst Technol, Dept Hlth Sci & Technol, Zurich, Switzerland
基金
瑞士国家科学基金会;
关键词
MNO2;
D O I
10.1038/s41586-020-2594-0
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Owing to their ultralow thermal conductivity and open pore structure(1-3), silica aerogels are widely used in thermal insulation(4,5), catalysis(6), physics(7,8), environmental remediation(6,9), optical devices(10) and hypervelocity particle capture(11). Thermal insulation is by far the largest market for silica aerogels, which are ideal materials when space is limited. One drawback of silica aerogels is their brittleness. Fibre reinforcement and binders can be used to overcome this for large-volume applications in building and industrial insulation(5,12), but their poor machinability, combined with the difficulty of precisely casting small objects, limits the miniaturization potential of silica aerogels. Additive manufacturing provides an alternative route to miniaturization, but was "considered not feasible for silica aerogel"(13). Here we present a direct ink writing protocol to create miniaturized silica aerogel objects from a slurry of silica aerogel powder in a dilute silica nanoparticle suspension (sol). The inks exhibit shear-thinning behaviour, owing to the high volume fraction of gel particles. As a result, they flow easily through the nozzle during printing, but their viscosity increases rapidly after printing, ensuring that the printed objects retain their shape. After printing, the silica sol is gelled in an ammonia atmosphere to enable subsequent processing into aerogels. The printed aerogel objects are pure silica and retain the high specific surface area (751 square metres per gram) and ultralow thermal conductivity (15.9 milliwatts per metre per kelvin) typical of silica aerogels. Furthermore, we demonstrate the ease with which functional nanoparticles can be incorporated. The printed silica aerogel objects can be used for thermal management, as miniaturized gas pumps and to degrade volatile organic compounds, illustrating the potential of our protocol.
引用
收藏
页码:387 / +
页数:19
相关论文
共 45 条
[1]   Rapid fabrication of hybrid aerogels and 3D printed porous materials [J].
Bertino, M. F. .
JOURNAL OF SOL-GEL SCIENCE AND TECHNOLOGY, 2018, 86 (02) :239-254
[2]   Adsorption of gases in multimolecular layers [J].
Brunauer, S ;
Emmett, PH ;
Teller, E .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1938, 60 :309-319
[3]   Direct ink writing of organic and carbon aerogels [J].
Chandrasekaran, Swetha ;
Yao, Bin ;
Liu, Tianyu ;
Xiao, Wang ;
Song, Yu ;
Qian, Fang ;
Zhu, Cheng ;
Duoss, Eric B. ;
Spadaccini, Christopher M. ;
Li, Yat ;
Worsley, Marcus A. .
MATERIALS HORIZONS, 2018, 5 (06) :1166-1175
[4]  
Collins R., 2018, IDTECHX
[5]   Silver metal nano-matrixes as high efficiency and versatile catalytic reactors for environmental remediation [J].
Dumee, Ludovic F. ;
Yi, Zhifeng ;
Tardy, Blaise ;
Merenda, Andrea ;
Ligneris, Elise des ;
Dagastine, Ray R. ;
Kong, Lingxue .
SCIENTIFIC REPORTS, 2017, 7
[6]  
Fox P. A., 1978, ACM Transactions on Mathematical Software, V4, P104, DOI 10.1145/355780.355783
[7]  
Gladman AS, 2016, NAT MATER, V15, P413, DOI [10.1038/NMAT4544, 10.1038/nmat4544]
[8]   Highly stretchable carbon aerogels [J].
Guo, Fan ;
Jiang, Yanqiu ;
Xu, Zhen ;
Xiao, Youhua ;
Fang, Bo ;
Liu, Yingjun ;
Gao, Weiwei ;
Zhao, Pei ;
Wang, Hongtao ;
Gao, Chao .
NATURE COMMUNICATIONS, 2018, 9
[9]   Dynamics of Cellulose Nanocrystal Alignment during 3D Printing [J].
Hausmann, Michael K. ;
Ruhs, Patrick A. ;
Siqueira, Gilberto ;
Laeuger, Joerg ;
Libanori, Rafael ;
Zimmermann, Tanja ;
Studart, Andre R. .
ACS NANO, 2018, 12 (07) :6926-6937
[10]   Patterned Carbon Nitride-Based Hybrid Aerogel Membranes via 3D Printing for Broadband Solar Wastewater Remediation [J].
He, Peisheng ;
Tang, Xingwei ;
Chen, Liao ;
Xie, Peiwen ;
He, Lu ;
Zhou, Han ;
Zhang, Di ;
Fan, Tongxiang .
ADVANCED FUNCTIONAL MATERIALS, 2018, 28 (29)