Limit-cycle oscillators subject to a delayed feedback

被引:13
作者
Erneux, Thomas [1 ]
Grasman, Johan [2 ]
机构
[1] Univ Libre Bruxelles, B-1050 Brussels, Belgium
[2] Wageningen Univ, Grp Math & Stat Methods, NL-6700 AC Wageningen, Netherlands
来源
PHYSICAL REVIEW E | 2008年 / 78卷 / 02期
关键词
D O I
10.1103/PhysRevE.78.026209
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The coexistence of two stable limit cycles exhibiting different periods is examined for a nonlinear oscillator subject to a delayed feedback. For the case of a weakly nonlinear oscillator, we discuss the validity of a previously determined phase equation. For the case of a strongly nonlinear oscillator, we derive a phase equation and analyze its bifurcation diagram. Our analysis is motivated by previous experimental studies of chemical oscillators controlled by a delayed feedback.
引用
收藏
页数:8
相关论文
共 32 条
[1]  
[Anonymous], 2019, Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering
[2]   Van der Pol's oscillator under delayed feedback [J].
Atay, FM .
JOURNAL OF SOUND AND VIBRATION, 1998, 218 (02) :333-339
[3]   Delayed feedback control of noise-induced patterns in excitable media [J].
Balanov, A. G. ;
Beato, V. ;
Janson, N. B. ;
Engel, H. ;
Schoell, E. .
PHYSICAL REVIEW E, 2006, 74 (01)
[4]  
BENNER H, HDB CHAOS CONTROL 16, pCH25
[5]   Controlling turbulence in a surface chemical reaction by time-delay autosynchronization [J].
Beta, C ;
Bertram, M ;
Mikhailov, AS ;
Rotermund, HH ;
Ertl, G .
PHYSICAL REVIEW E, 2003, 67 (04) :462241-4622410
[6]   Relaxation oscillators with time delay coupling [J].
Campbell, SR ;
Wang, D .
PHYSICA D, 1998, 111 (1-4) :151-178
[7]   Nonlinear stability of a delayed feedback controlled container crane [J].
Erneux, Thomas ;
Kalmar-Nagy, Tamas .
JOURNAL OF VIBRATION AND CONTROL, 2007, 13 (05) :603-616
[8]   IMPULSES AND PHYSIOLOGICAL STATES IN THEORETICAL MODELS OF NERVE MEMBRANE [J].
FITZHUGH, R .
BIOPHYSICAL JOURNAL, 1961, 1 (06) :445-&
[9]  
Goldbeter A., 1996, BIOCH OSCILLATIONS C
[10]  
GRASMAN J, 1987, APPL MATH SCI, V63