Ferromagnetic transition in a double-exchange system containing impurities

被引:28
作者
Auslender, M
Kogan, E
机构
[1] Ben Gurion Univ Negev, Dept Elect & Comp Engn, IL-84105 Beer Sheva, Israel
[2] Bar Ilan Univ, Dept Phys, Jack & Pearl Resnick Inst Adv Technol, IL-52900 Ramat Gan, Israel
[3] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England
关键词
D O I
10.1103/PhysRevB.65.012408
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We studs the ferromagnetic transition in a three-dimensional double-exchange model containing impurities, The influence of both spin fluctuations and the impurity potential on conduction electrons is described in a coherent potential approximation. In the framework of the thermodynamic approach we construct a Landau functional for the system "electrons (in disordered environment) + core spins." Analyzing the Landau functional we calculate the temperature of the ferromagnetic transition T-C and paramagnetic susceptibility chi. For T-C, we thus extend the result obtained by Furukawa in the framework of the dynamical mean-field approximation, with which our result coincides in the limit of zero-impurity potential. We find that alloy disorder. able to produce a gap in the density of electron states, can substantially decrease T-C with respect to the case of no impurities.
引用
收藏
页数:4
相关论文
共 24 条
[1]   Variational mean-field approach to the double-exchange model -: art. no. 054411 [J].
Alonso, JL ;
Fernández, LA ;
Guinea, F ;
Laliena, V ;
Martín-Mayor, V .
PHYSICAL REVIEW B, 2001, 63 (05)
[2]   CONSIDERATIONS ON DOUBLE EXCHANGE [J].
ANDERSON, PW ;
HASEGAWA, H .
PHYSICAL REVIEW, 1955, 100 (02) :675-681
[3]   Phase separation in double-exchange systems [J].
Arovas, DP ;
Gómez-Santos, G ;
Guinea, F .
PHYSICAL REVIEW B, 1999, 59 (21) :13569-13572
[4]   CPA density of states and conductivity in a double-exchange system containing impurities [J].
Auslender, M ;
Kogan, E .
EUROPEAN PHYSICAL JOURNAL B, 2001, 19 (04) :525-529
[5]  
Chadra K, 1993, APPL PHYS LETT, V63, P1990, DOI [10.1063/1.110624, DOI 10.1063/1.110624]
[6]  
FURUKAWA N, 1999, PHYSICS MANGANITES
[7]  
FURUKAWA N, CONDMAT9812066
[8]   Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions [J].
Georges, A ;
Kotliar, G ;
Krauth, W ;
Rozenberg, MJ .
REVIEWS OF MODERN PHYSICS, 1996, 68 (01) :13-125
[9]   Magnetic susceptibility of the double-exchange model [J].
Green, ACM ;
Edwards, DM .
JOURNAL OF PHYSICS-CONDENSED MATTER, 1999, 11 (50) :10511-10529
[10]   Phase separation and enhanced charge-spin coupling near magnetic transitions [J].
Guinea, F ;
Gómez-Santos, G ;
Arovas, DP .
PHYSICAL REVIEW B, 2000, 62 (01) :391-401