Electromagnetic scattering from homogeneous dielectric bodies using time-domain integral equations

被引:13
|
作者
Pisharody, G [1 ]
Weile, DS [1 ]
机构
[1] Univ Delaware, Dept Elect & Comp Engn, Newark, DE 19716 USA
基金
美国国家科学基金会;
关键词
augmented fields approach; integral equations; low frequency instability; transient analysis;
D O I
10.1109/TAP.2005.863137
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper presents a stable and accurate method to compute the electromagnetic scattering from homogeneous, isotropic, and nondispersive bodies using time-domain integral equations (TDIEs). Unlike previous TDIE-based scattering work, the formulation presented here is based on the equations of Poggio, Miller, Chang, Harrington, Wu, and Tsai formulation. The method employs the higher-order divergence-conforming basis functions described by Graglia et aL and bandlimited interpolation functions to effect the spatial and temporal discretization of the integral equations, respectively. As the temporal basis functions are noncausal, an extrapolation mechanism is used to modify the noncausal system of equations to a form solvable by standard marching-on-in-time procedure. This work also explains the reason for late-time low-frequency instabilities encountered in current TDIE implementations and details a stabilization technique employed to overcome them. Numerical results demonstrate the accuracy and stability of the proposed technique.
引用
收藏
页码:687 / 697
页数:11
相关论文
共 50 条