The topology of the relative character varieties of a quadruply-punctured sphere

被引:26
作者
Benedetto, RL [1 ]
Goldman, WM
机构
[1] Univ Rochester, Dept Math, Rochester, NY 14627 USA
[2] Univ Maryland, Dept Math, College Pk, MD 20742 USA
基金
美国国家科学基金会;
关键词
surface; fundamental group; character variety; representation variety;
D O I
10.1080/10586458.1999.10504391
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let M be a quadruply-punctured sphere with boundary components A, B, C, D. The SL(2, C)-character variety of M consists of equivalence classes of homomorphisms rho of pi(1)(M) --> SL(2, C) and can be identified with a quartic hypersurface in C-7. For fixed a, b, c, d is an element of C, the subset V-a,V-b,V-c,V-d corresponding to representations rho with tr(p(A))= a, tr(rho(B)) = b, tr(rho(C)) = c, tr(rho(D)) = d is a cubic surface in C-3. We determine the singular points of Va,b,c,d and classify its set V-a,V-b,V-c,V-d(IR) of IR-points into six topological types, at least when this set is nonsingular. V-a,V-b,V-c,V-d(IR) contains a compact component if and only if -2 < a, b, c, d < 2. For certain values of (a, b, c, d), this component corresponds to representations in SL(2, IR).
引用
收藏
页码:85 / 103
页数:19
相关论文
共 15 条
[1]  
BENEDETTO R, 1993, THESIS HARVARD U
[2]  
Fricke R, 1897, VORLESUNGEN THEORIE, V1
[3]  
GALITZER AJ, 1997, THESIS U MARYLAND
[4]   TOPOLOGICAL COMPONENTS OF SPACES OF REPRESENTATIONS [J].
GOLDMAN, WM .
INVENTIONES MATHEMATICAE, 1988, 93 (03) :557-607
[5]   Ergodic theory on moduli spaces [J].
Goldman, WM .
ANNALS OF MATHEMATICS, 1997, 146 (03) :475-507
[6]  
GOLDMAN WM, 1988, CONT MATH, V47, P169
[7]  
KAPOVICH M, 1995, J DIFFER GEOM, V42, P133
[8]   REPRESENTATION SPACES OF SEIFERT FIBERED HOMOLOGY SPHERES [J].
KIRK, PA ;
KLASSEN, EP .
TOPOLOGY, 1991, 30 (01) :77-95
[9]  
LUBOTZKY A, 1985, MEM AM MATH SOC, V336
[10]   RINGS OF FRICKE CHARACTERS AND AUTOMORPHISM-GROUPS OF FREE GROUPS [J].
MAGNUS, W .
MATHEMATISCHE ZEITSCHRIFT, 1980, 170 (01) :91-103