Three-dimensional macroporous graphene scaffolds for tissue engineering

被引:16
|
作者
Lalwani, Gaurav [1 ]
D'agati, Michael [1 ]
Gopalan, Anu [1 ]
Rao, Manisha [1 ]
Schneller, Jessica [2 ]
Sitharaman, Balaji [1 ]
机构
[1] SUNY Stony Brook, Dept Biomed Engn, Stony Brook, NY 11794 USA
[2] NIH, Dept Bioengn, Bethesda, MD 20892 USA
基金
美国国家卫生研究院;
关键词
three-dimensional; graphene; scaffolds; cytotoxicity; tissue engineering; OSTEOGENIC DIFFERENTIATION; NEURAL-NETWORKS; CYTOCOMPATIBILITY; FABRICATION; CYTOTOXICITY; DEGRADATION; ANTIGEN; PROTEIN; OXIDE; KI-67;
D O I
10.1002/jbm.a.35867
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
The assembly of carbon nanomaterials into three-dimensional (3D) porous scaffolds is critical to harness their unique physiochemical properties for tissue engineering and regenerative medicine applications. In this study, we report the fabrication, characterization, and in vitro cytocompatibility of true 3D (>1 mm in all three dimensions), macroscopic (3-8 mm in height and 4-6 mm in diameter), chemically cross-linked graphene scaffolds prepared via radical initiated thermal cross-linking of single- and multiwalled graphene oxide nanoribbons (SWGONRs and MWGONRs). SWGONR and MWGONR scaffolds possess tunable porosity (approximate to 65-80%) and interconnected macro-, micro-, and nanoscale pores. Human adipose derived stem cells (ADSCs) and murine MC3T3 preosteoblast cells show good cell viability on SWGONR and MWGONR scaffolds after 1, 3, and 5 days comparable to 3D poly(lactic-co-glycolic) acid (PLGA) scaffolds. Confocal live-cell imaging showed that cells were metabolically active and could spread on SWGONR and MWGONR scaffolds. Immunofluorescence imaging showed the presence of focal adhesion protein vinculin and expression of cell proliferation marker Ki-67 suggesting that cells could attach and proliferate on SWGONR and MWGONR scaffolds. These results indicate that cross-linked SWGONR and MWGONR scaffolds are cytocompatible and opens-avenues toward the development of 3D multifunctional graphene scaffolds for tissue engineering applications. (c) 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 73-83, 2017.
引用
收藏
页码:73 / 83
页数:11
相关论文
共 50 条
  • [21] Three-dimensional nanofibrous and porous scaffolds of poly(ε-caprolactone)-chitosan blends for musculoskeletal tissue engineering
    Pereira, Andreia Leal
    Semitela, Angela
    Girao, Andre F.
    Completo, Antonio
    Marques, Paula A. A. P.
    Guieu, Samuel
    Fernandes, Maria Helena V.
    JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, 2023, 111 (07) : 950 - 961
  • [22] Printability of calcium phosphate powders for three-dimensional printing of tissue engineering scaffolds
    Butscher, Andre
    Bohner, Marc
    Roth, Christian
    Ernstberger, Annika
    Heuberger, Roman
    Doebelin, Nicola
    von Rohr, Philipp Rudolf
    Mueller, Ralph
    ACTA BIOMATERIALIA, 2012, 8 (01) : 373 - 385
  • [23] Three-dimensional electrospun nanofibrous scaffolds for bone tissue engineering
    Lin, Weimin
    Chen, Miao
    Qu, Tao
    Li, Jidong
    Man, Yi
    JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART B-APPLIED BIOMATERIALS, 2020, 108 (04) : 1311 - 1321
  • [24] Three-dimensional graphene foam as a conductive scaffold for cardiac tissue engineering
    Bahrami, Sajad
    Baheiraei, Nafiseh
    Mohseni, Majid
    Razavi, Mehdi
    Ghaderi, Atefeh
    Azizi, Behnam
    Rabiee, Navid
    Karimi, Mahdi
    JOURNAL OF BIOMATERIALS APPLICATIONS, 2019, 34 (01) : 74 - 85
  • [25] Advancing fabrication and properties of three-dimensional graphene-alginate scaffolds for application in neural tissue engineering
    Mansouri, Negar
    Al-Sarawi, Said F.
    Mazumdar, Jagan
    Losic, Dusan
    RSC ADVANCES, 2019, 9 (63) : 36838 - 36848
  • [26] Freestanding Three-Dimensional Graphene Macroporous Supercapacitor
    Down, Michael P.
    Banks, Craig E.
    ACS APPLIED ENERGY MATERIALS, 2018, 1 (02): : 891 - 899
  • [27] Feasibility of Polycaprolactone Scaffolds Fabricated by Three-Dimensional Printing for Tissue Engineering of Tunica Albuginea
    Yu, Ho Song
    Park, Jinju
    Lee, Hyun-Suk
    Park, Su A.
    Lee, Dong-Weon
    Park, Kwangsung
    WORLD JOURNAL OF MENS HEALTH, 2018, 36 (01) : 66 - 72
  • [28] Fabrication and Characterization of Three-Dimensional Electrospun Scaffolds for Bone Tissue Engineering
    Andric T.
    Taylor B.L.
    Whittington A.R.
    Freeman J.W.
    Regenerative Engineering and Translational Medicine, 2015, 1 (1-4) : 32 - 41
  • [29] Three-dimensional printing of porous ceramic scaffolds for bone tissue engineering
    Seitz, H
    Rieder, W
    Irsen, S
    Leukers, B
    Tille, C
    JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART B-APPLIED BIOMATERIALS, 2005, 74B (02) : 782 - 788
  • [30] Fabrication of three-dimensional poly(ε-caprolactone) scaffolds with hierarchical pore structures for tissue engineering
    Zhang, Qingchun
    Luo, Houyong
    Zhang, Yan
    Zhou, Yan
    Ye, Zhaoyang
    Tan, Wensong
    Lang, Meidong
    MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2013, 33 (04): : 2094 - 2103