Three-dimensional macroporous graphene scaffolds for tissue engineering

被引:16
|
作者
Lalwani, Gaurav [1 ]
D'agati, Michael [1 ]
Gopalan, Anu [1 ]
Rao, Manisha [1 ]
Schneller, Jessica [2 ]
Sitharaman, Balaji [1 ]
机构
[1] SUNY Stony Brook, Dept Biomed Engn, Stony Brook, NY 11794 USA
[2] NIH, Dept Bioengn, Bethesda, MD 20892 USA
基金
美国国家卫生研究院;
关键词
three-dimensional; graphene; scaffolds; cytotoxicity; tissue engineering; OSTEOGENIC DIFFERENTIATION; NEURAL-NETWORKS; CYTOCOMPATIBILITY; FABRICATION; CYTOTOXICITY; DEGRADATION; ANTIGEN; PROTEIN; OXIDE; KI-67;
D O I
10.1002/jbm.a.35867
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
The assembly of carbon nanomaterials into three-dimensional (3D) porous scaffolds is critical to harness their unique physiochemical properties for tissue engineering and regenerative medicine applications. In this study, we report the fabrication, characterization, and in vitro cytocompatibility of true 3D (>1 mm in all three dimensions), macroscopic (3-8 mm in height and 4-6 mm in diameter), chemically cross-linked graphene scaffolds prepared via radical initiated thermal cross-linking of single- and multiwalled graphene oxide nanoribbons (SWGONRs and MWGONRs). SWGONR and MWGONR scaffolds possess tunable porosity (approximate to 65-80%) and interconnected macro-, micro-, and nanoscale pores. Human adipose derived stem cells (ADSCs) and murine MC3T3 preosteoblast cells show good cell viability on SWGONR and MWGONR scaffolds after 1, 3, and 5 days comparable to 3D poly(lactic-co-glycolic) acid (PLGA) scaffolds. Confocal live-cell imaging showed that cells were metabolically active and could spread on SWGONR and MWGONR scaffolds. Immunofluorescence imaging showed the presence of focal adhesion protein vinculin and expression of cell proliferation marker Ki-67 suggesting that cells could attach and proliferate on SWGONR and MWGONR scaffolds. These results indicate that cross-linked SWGONR and MWGONR scaffolds are cytocompatible and opens-avenues toward the development of 3D multifunctional graphene scaffolds for tissue engineering applications. (c) 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 73-83, 2017.
引用
收藏
页码:73 / 83
页数:11
相关论文
共 50 条
  • [1] Porous three-dimensional carbon nanotube scaffolds for tissue engineering
    Lalwani, Gaurav
    Gopalan, Anu
    D'Agati, Michael
    Sankaran, Jeyantt Srinivas
    Judex, Stefan
    Qin, Yi-Xian
    Sitharaman, Balaji
    JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, 2015, 103 (10) : 3212 - 3225
  • [2] Three-dimensional porous scaffolds based on agarose/chitosan/graphene oxide composite for tissue engineering
    Sivashankari, P. R.
    Prabaharan, M.
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2020, 146 : 222 - 231
  • [3] Recent Advancements on Three-Dimensional Electrospun Nanofiber Scaffolds for Tissue Engineering
    Chen, Yujie
    Dong, Xutao
    Shafiq, Muhammad
    Myles, Gregory
    Radacsi, Norbert
    Mo, Xiumei
    ADVANCED FIBER MATERIALS, 2022, 4 (05) : 959 - 986
  • [4] Three-Dimensional Scaffolds for Bone Tissue Engineering
    Chinnasami, Harish
    Dey, Mohan Kumar
    Devireddy, Ram
    BIOENGINEERING-BASEL, 2023, 10 (07):
  • [5] Three dimensional macroporous calcium phosphate scaffolds for bone tissue engineering
    Teixeira, S.
    Oliveira, S.
    Ferraz, M. P.
    Monteiro, F. J.
    BIOCERAMICS, VOL 20, PTS 1 AND 2, 2008, 361-363 : 947 - +
  • [6] Techniques for fabrication and construction of three-dimensional scaffolds for tissue engineering
    Lu, Tingli
    Li, Yuhui
    Chen, Tao
    INTERNATIONAL JOURNAL OF NANOMEDICINE, 2013, 8 : 337 - 350
  • [7] Three-dimensional CaP/gelatin lattice scaffolds with integrated osteoinductive surface topographies for bone tissue engineering
    Nadeem, Danish
    Smith, Carol-Anne
    Dalby, Matthew J.
    Meek, R. M. Dominic
    Lin, Sien
    Li, Gang
    Su, Bo
    BIOFABRICATION, 2015, 7 (01)
  • [8] Fabrication of three-dimensional scaffolds for heterogeneous tissue engineering
    Li-Hsin Han
    Shalu Suri
    Christine E. Schmidt
    Shaochen Chen
    Biomedical Microdevices, 2010, 12 : 721 - 725
  • [9] Design and development of three-dimensional scaffolds for tissue engineering
    Liu, C.
    Xia, Z.
    Czernuszka, J. T.
    CHEMICAL ENGINEERING RESEARCH & DESIGN, 2007, 85 (A7) : 1051 - 1064
  • [10] Three-dimensional microfabrication system for scaffolds in tissue engineering
    Lee, Seung-Jae
    Kim, Byung
    Lee, Jin-Sang
    Kim, Sung-Won
    Kim, Min-Soo
    Kim, Joo Sung
    Lim, Geunbae
    Cho, Dong-Woo
    EXPERIMENTAL MECHANICS IN NANO AND BIOTECHNOLOGY, PTS 1 AND 2, 2006, 326-328 : 723 - +