ON THE SECOND-LARGEST SYLOW SUBGROUP OF A FINITE SIMPLE GROUP OF LIE TYPE

被引:0
|
作者
Glasby, S. P. [1 ]
Niemeyer, Alice C. [2 ]
Popiel, Tomasz [1 ,3 ]
机构
[1] Univ Western Australia, Ctr Math Symmetry & Computat, Crawley, WA 6009, Australia
[2] Rhein Westfal TH Aachen, Lehrstuhl B Math Lehr & Forsch Gebiet Algebra, Pontdriesch 10-16, D-52062 Aachen, Germany
[3] Queen Mary Univ London, Sch Math Sci, Mile End Rd, London E1 4NS, England
基金
澳大利亚研究理事会;
关键词
simple group; Sylow subgroup; Lie rank; ORDERS;
D O I
10.1017/S0004972718000928
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let T be a finite simple group of Lie type in characteristic p, and let S be a Sylow subgroup of T with maximal order. It is well known that S is a Sylow p-subgroup except for an explicit list of exceptions and that S is always 'large' in the sense that vertical bar T vertical bar(1/3) < vertical bar S vertical bar <= vertical bar T vertical bar(1/2). One might anticipate that, moreover, the Sylow r-subgroups of T with r # p are usually significantly smaller than S. We verify this hypothesis by proving that, for every T and every prime divisor r of vertical bar T vertical bar with r not equal p, the order of the Sylow r-subgroup of T is at most vertical bar T vertical bar(2 left pependicular log)(r(4(l+1)r))( Right pependicular)( / l) = vertical bar T vertical bar(O(logr)((l)/l)), where Pis the Lie rank of T.
引用
收藏
页码:203 / 211
页数:9
相关论文
共 50 条