A comparative analysis of numerical methods of solving the continuation problem for 1D parabolic equation with the data given on the part of the boundary

被引:10
作者
Belonosov, Andrey [1 ]
Shishlenin, Maxim [2 ]
Klyuchinskiy, Dmitriy [1 ]
机构
[1] Novosibirsk State Univ, Inst Computat Math & Math Geophys, Novosibirsk 630090, Russia
[2] Novosibirsk State Univ, Sobolev Inst Math, Inst Computat Math & Math Geophys, Novosibirsk 630090, Russia
基金
俄罗斯基础研究基金会;
关键词
Parabolic equation; Continuation problem; Numerical methods; Finite-difference scheme inversion; Singular value decomposition; Gradient method;
D O I
10.1007/s10444-018-9631-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The ill-posed continuation problem for the one-dimensional parabolic equation with the data given on the part of the boundary is investigated. We prove the uniqueness theorem about the solution of the continuation problem. The finite-difference scheme inversion, the singular value decomposition, and gradient type method are numerically compared. The influence of a noisy data on the solution is presented.
引用
收藏
页码:735 / 755
页数:21
相关论文
共 27 条
[1]  
Alifanov O., 1995, Extreme Methods for Solving Ill-Posed Problems
[2]  
Alifanov O. M., 1994, Inverse heat conduction problems
[3]   Carleman weight functions for a globally convergent numerical method for ill-posed Cauchy problems for some quasilinear PDEs [J].
Bakushinskii, Anatoly B. ;
Klibanov, Michael V. ;
Koshev, Nikolaj A. .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2017, 34 :201-224
[4]  
Bastay G., 2001, J INVERSE ILL-POSE P, V9, P375, DOI DOI 10.1515/JIIP.2001.9.4.375
[5]   APPLICATION OF MIXED FORMULATIONS OF QUASI-REVERSIBILITY TO SOLVE ILL-POSED PROBLEMS FOR HEAT AND WAVE EQUATIONS: THE 1D CASE [J].
Becache, Eliane ;
Bourgeois, Laurent ;
Franceschini, Lucas ;
Darde, Jeremi .
INVERSE PROBLEMS AND IMAGING, 2015, 9 (04) :971-1002
[6]  
Belonosov A.S., 1974, MATH PROBL GEOPHYS, V5, P30
[7]  
Belonosov A.S., 2014, SIBER ELECT MATH REP, V11, P22
[8]   Regularization Methods of the Continuation Problem for the Parabolic Equation [J].
Belonosov, Andrey ;
Shishlenin, Maxim .
NUMERICAL ANALYSIS AND ITS APPLICATIONS (NAA 2016), 2017, 10187 :220-226
[9]   An alternating iterative procedure for the Cauchy problem for the Helmholtz equation [J].
Berntsson, F. ;
Kozlov, V. A. ;
Mpinganzima, L. ;
Turesson, B. O. .
INVERSE PROBLEMS IN SCIENCE AND ENGINEERING, 2014, 22 (01) :45-62
[10]   ITERATED QUASI-REVERSIBILITY METHOD APPLIED TO ELLIPTIC AND PARABOLIC DATA COMPLETION PROBLEMS [J].
Darde, Jeremi .
INVERSE PROBLEMS AND IMAGING, 2016, 10 (02) :379-407