Machine-learned interatomic potentials by active learning: amorphous and liquid hafnium dioxide

被引:134
|
作者
Sivaraman, Ganesh [1 ]
Krishnamoorthy, Anand Narayanan [2 ,3 ]
Baur, Matthias [2 ]
Holm, Christian [2 ]
Stan, Marius [4 ]
Csanyi, Gabor [5 ]
Benmore, Chris [6 ]
Vazquez-Mayagoitia, Alvaro [7 ]
机构
[1] Argonne Natl Lab, Leadership Comp Facil, 9700 S Cass Ave, Argonne, IL 60439 USA
[2] Univ Stuttgart, Inst Computat Phys, Allmandring 3, D-70569 Stuttgart, Germany
[3] Forschungszentrum Julich, Helmholtz Inst Munster Ion Energy Storage IEK 12, Corrensstr 46, D-48149 Munster, Germany
[4] Argonne Natl Lab, Appl Mat Div, 9700 S Cass Ave, Argonne, IL 60439 USA
[5] Univ Cambridge, Dept Engn, Trumpington St, Cambridge CB2 1PZ, England
[6] Argonne Natl Lab, Xray Sci Div, 9700 S Cass Ave, Argonne, IL 60439 USA
[7] Argonne Natl Lab, Computat Sci Div, 9700 S Cass Ave, Argonne, IL 60439 USA
关键词
MOLECULAR-DYNAMICS; COEFFICIENTS; ACCURATE;
D O I
10.1038/s41524-020-00367-7
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We propose an active learning scheme for automatically sampling a minimum number of uncorrelated configurations for fitting the Gaussian Approximation Potential (GAP). Our active learning scheme consists of an unsupervised machine learning (ML) scheme coupled with a Bayesian optimization technique that evaluates the GAP model. We apply this scheme to a Hafnium dioxide (HfO2) dataset generated from a "melt-quench" ab initio molecular dynamics (AIMD) protocol. Our results show that the active learning scheme, with no prior knowledge of the dataset, is able to extract a configuration that reaches the required energy fit tolerance. Further, molecular dynamics (MD) simulations performed using this active learned GAP model on 6144 atom systems of amorphous and liquid state elucidate the structural properties of HfO(2)with near ab initio precision and quench rates (i.e., 1.0 K/ps) not accessible via AIMD. The melt and amorphous X-ray structural factors generated from our simulation are in good agreement with experiment. In addition, the calculated diffusion constants are in good agreement with previous ab initio studies.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Reaction dynamics on amorphous solid water surfaces using interatomic machine-learned potentials Microscopic energy partition revealed from the P plus H → PH reaction
    Molpeceres, G.
    Zaverkin, V.
    Furuya, K.
    Aikawa, Y.
    Kaestner, J.
    ASTRONOMY & ASTROPHYSICS, 2023, 673
  • [42] Experimental and Computational Study Toward Identifying Active Sites of Supported SnOx Nanoparticles for Electrochemical CO2 Reduction Using Machine-Learned Interatomic Potentials
    Shi, Junjie
    Prslja, Paulina
    Jin, Benjin
    Suominen, Milla
    Sainio, Jani
    Jiang, Hua
    Han, Nana
    Robertson, Daria
    Kosir, Janez
    Caro, Miguel
    Kallio, Tanja
    SMALL, 2024, 20 (40)
  • [43] A Status Report on "Gold Standard" Machine-Learned Potentials for Water
    Yu, Qi
    Qu, Chen
    Houston, Paul L.
    Nandi, Apurba
    Pandey, Priyanka
    Conte, Riccardo
    Bowman, Joel M.
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2023, 14 (36): : 8077 - 8087
  • [44] Thermal properties of single-layer MoS2-WS2 alloys enabled by machine-learned interatomic potentials
    Marmolejo-Tejada, Juan M.
    Mosquera, Martin A.
    CHEMICAL COMMUNICATIONS, 2022, 58 (49) : 6902 - 6905
  • [45] Combining Brillouin Light Scattering Spectroscopy and Machine-Learned Interatomic Potentials to Probe Mechanical Properties of Metal-Organic Frameworks
    Lindner, Florian P.
    Strasser, Nina
    Schultze, Martin
    Wieser, Sandro
    Slugovc, Christian
    Elsayad, Kareem
    Koski, Kristie J.
    Zojer, Egbert
    Czibula, Caterina
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2025, 16 (05): : 1213 - 1220
  • [46] Transferability and Accuracy of Ionic Liquid Simulations with Equivariant Machine Learning Interatomic Potentials
    Goodwin, Zachary A. H.
    Wenny, Malia B.
    Yang, Julia H.
    Cepellotti, Andrea
    Ding, Jingxuan
    Bystrom, Kyle
    Duschatko, Blake R.
    Johansson, Anders
    Sun, Lixin
    Batzner, Simon
    Musaelian, Albert
    Mason, Jarad A.
    Kozinsky, Boris
    Molinari, Nicola
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2024, 15 (30): : 7539 - 7547
  • [47] Machine learned interatomic potentials for gas-metal interactions
    Cusentino, M. A.
    Wood, M. A.
    Thompson, A. P.
    MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING, 2025, 33 (01)
  • [48] Construction of Machine Learning Interatomic Potentials for Metals
    Dmitriev, S. V.
    Kistanov, A. A.
    Kosarev, I. V.
    Scherbinin, S. A.
    Shapeev, A. V.
    RUSSIAN PHYSICS JOURNAL, 2024, 67 (09) : 1408 - 1413
  • [49] Machine Learning Interatomic Potentials for Heterogeneous Catalysis
    Tang, Deqi
    Ketkaew, Rangsiman
    Luber, Sandra
    CHEMISTRY-A EUROPEAN JOURNAL, 2024, 30 (60)
  • [50] A Genetic Algorithm Trained Machine-Learned Interatomic Potential for the Silicon-Carbon System
    MacIsaac, Michael
    Bavdekar, Salil
    Spearot, Douglas
    Subhash, Ghatu
    JOURNAL OF PHYSICAL CHEMISTRY C, 2024, 128 (29): : 12213 - 12226