Machine-learned interatomic potentials by active learning: amorphous and liquid hafnium dioxide

被引:134
|
作者
Sivaraman, Ganesh [1 ]
Krishnamoorthy, Anand Narayanan [2 ,3 ]
Baur, Matthias [2 ]
Holm, Christian [2 ]
Stan, Marius [4 ]
Csanyi, Gabor [5 ]
Benmore, Chris [6 ]
Vazquez-Mayagoitia, Alvaro [7 ]
机构
[1] Argonne Natl Lab, Leadership Comp Facil, 9700 S Cass Ave, Argonne, IL 60439 USA
[2] Univ Stuttgart, Inst Computat Phys, Allmandring 3, D-70569 Stuttgart, Germany
[3] Forschungszentrum Julich, Helmholtz Inst Munster Ion Energy Storage IEK 12, Corrensstr 46, D-48149 Munster, Germany
[4] Argonne Natl Lab, Appl Mat Div, 9700 S Cass Ave, Argonne, IL 60439 USA
[5] Univ Cambridge, Dept Engn, Trumpington St, Cambridge CB2 1PZ, England
[6] Argonne Natl Lab, Xray Sci Div, 9700 S Cass Ave, Argonne, IL 60439 USA
[7] Argonne Natl Lab, Computat Sci Div, 9700 S Cass Ave, Argonne, IL 60439 USA
关键词
MOLECULAR-DYNAMICS; COEFFICIENTS; ACCURATE;
D O I
10.1038/s41524-020-00367-7
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We propose an active learning scheme for automatically sampling a minimum number of uncorrelated configurations for fitting the Gaussian Approximation Potential (GAP). Our active learning scheme consists of an unsupervised machine learning (ML) scheme coupled with a Bayesian optimization technique that evaluates the GAP model. We apply this scheme to a Hafnium dioxide (HfO2) dataset generated from a "melt-quench" ab initio molecular dynamics (AIMD) protocol. Our results show that the active learning scheme, with no prior knowledge of the dataset, is able to extract a configuration that reaches the required energy fit tolerance. Further, molecular dynamics (MD) simulations performed using this active learned GAP model on 6144 atom systems of amorphous and liquid state elucidate the structural properties of HfO(2)with near ab initio precision and quench rates (i.e., 1.0 K/ps) not accessible via AIMD. The melt and amorphous X-ray structural factors generated from our simulation are in good agreement with experiment. In addition, the calculated diffusion constants are in good agreement with previous ab initio studies.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] A theoretical case study of the generalization of machine-learned potentials
    Wang, Yangshuai
    Patel, Shashwat
    Ortner, Christoph
    Computer Methods in Applied Mechanics and Engineering, 2024, 422
  • [32] A theoretical case study of the generalization of machine-learned potentials
    Wang, Yangshuai
    Patel, Shashwat
    Ortner, Christoph
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2024, 422
  • [33] Machine learned interatomic potentials using random features
    Dhaliwal, Gurjot
    Nair, Prasanth B.
    Singh, Chandra Veer
    NPJ COMPUTATIONAL MATERIALS, 2022, 8 (01)
  • [34] Optimal data generation for machine learned interatomic potentials
    Allen, Connor
    Bartok, Albert P.
    MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2022, 3 (04):
  • [35] Machine learned interatomic potentials using random features
    Gurjot Dhaliwal
    Prasanth B. Nair
    Chandra Veer Singh
    npj Computational Materials, 8
  • [36] Multiscale machine-learning interatomic potentials for ferromagnetic and liquid iron
    Byggmastar, J.
    Nikoulis, G.
    Fellman, A.
    Granberg, F.
    Djurabekova, F.
    Nordlund, K.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2022, 34 (30)
  • [37] Accelerating crystal structure prediction by machine-learning interatomic potentials with active learning
    Podryabinkin, Evgeny, V
    Tikhonov, Evgeny, V
    Shapeev, Alexander, V
    Oganov, Artem R.
    PHYSICAL REVIEW B, 2019, 99 (06)
  • [38] Machine-learned potentials for next-generation matter simulations
    Pascal Friederich
    Florian Häse
    Jonny Proppe
    Alán Aspuru-Guzik
    Nature Materials, 2021, 20 : 750 - 761
  • [39] Experimental and Computational Study Toward Identifying Active Sites of Supported SnOx Nanoparticles for Electrochemical CO2 Reduction Using Machine-Learned Interatomic Potentials
    Shi, Junjie
    Prslja, Paulina
    Jin, Benjin
    Suominen, Milla
    Sainio, Jani
    Jiang, Hua
    Han, Nana
    Robertson, Daria
    Kosir, Janez
    Caro, Miguel
    Kallio, Tanja
    SMALL, 2024,
  • [40] Machine-learned potentials for next-generation matter simulations
    Friederich, Pascal
    Hase, Florian
    Proppe, Jonny
    Aspuru-Guzik, Alan
    NATURE MATERIALS, 2021, 20 (06) : 750 - 761