Machine-learned interatomic potentials by active learning: amorphous and liquid hafnium dioxide

被引:134
|
作者
Sivaraman, Ganesh [1 ]
Krishnamoorthy, Anand Narayanan [2 ,3 ]
Baur, Matthias [2 ]
Holm, Christian [2 ]
Stan, Marius [4 ]
Csanyi, Gabor [5 ]
Benmore, Chris [6 ]
Vazquez-Mayagoitia, Alvaro [7 ]
机构
[1] Argonne Natl Lab, Leadership Comp Facil, 9700 S Cass Ave, Argonne, IL 60439 USA
[2] Univ Stuttgart, Inst Computat Phys, Allmandring 3, D-70569 Stuttgart, Germany
[3] Forschungszentrum Julich, Helmholtz Inst Munster Ion Energy Storage IEK 12, Corrensstr 46, D-48149 Munster, Germany
[4] Argonne Natl Lab, Appl Mat Div, 9700 S Cass Ave, Argonne, IL 60439 USA
[5] Univ Cambridge, Dept Engn, Trumpington St, Cambridge CB2 1PZ, England
[6] Argonne Natl Lab, Xray Sci Div, 9700 S Cass Ave, Argonne, IL 60439 USA
[7] Argonne Natl Lab, Computat Sci Div, 9700 S Cass Ave, Argonne, IL 60439 USA
关键词
MOLECULAR-DYNAMICS; COEFFICIENTS; ACCURATE;
D O I
10.1038/s41524-020-00367-7
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We propose an active learning scheme for automatically sampling a minimum number of uncorrelated configurations for fitting the Gaussian Approximation Potential (GAP). Our active learning scheme consists of an unsupervised machine learning (ML) scheme coupled with a Bayesian optimization technique that evaluates the GAP model. We apply this scheme to a Hafnium dioxide (HfO2) dataset generated from a "melt-quench" ab initio molecular dynamics (AIMD) protocol. Our results show that the active learning scheme, with no prior knowledge of the dataset, is able to extract a configuration that reaches the required energy fit tolerance. Further, molecular dynamics (MD) simulations performed using this active learned GAP model on 6144 atom systems of amorphous and liquid state elucidate the structural properties of HfO(2)with near ab initio precision and quench rates (i.e., 1.0 K/ps) not accessible via AIMD. The melt and amorphous X-ray structural factors generated from our simulation are in good agreement with experiment. In addition, the calculated diffusion constants are in good agreement with previous ab initio studies.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Machine-learned potentials for eucryptite: A systematic comparison
    Hill, Jorg-Rudiger
    Mannstadt, Wolfgang
    JOURNAL OF MATERIALS RESEARCH, 2023, 38 (24) : 5188 - 5197
  • [22] Modeling refractory high-entropy alloys with efficient machine-learned interatomic potentials: Defects and segregation
    Byggmastar, J.
    Nordlund, K.
    Djurabekova, F.
    PHYSICAL REVIEW B, 2021, 104 (10)
  • [23] Quantifying Chemical Structure and Machine-Learned Atomic Energies in Amorphous and Liquid Silicon
    Bernstein, Noam
    Bhattarai, Bishal
    Csanyi, Gabor
    Drabold, David A.
    Elliott, Stephen R.
    Deringer, Volker L.
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2019, 58 (21) : 7057 - 7061
  • [24] Machine-learned potentials for eucryptite: A systematic comparison
    Jörg-Rüdiger Hill
    Wolfgang Mannstadt
    Journal of Materials Research, 2023, 38 : 5188 - 5197
  • [25] Collaboration on Machine-Learned Potentials with IPSuite: A Modular Framework for Learning-on-the-Fly
    Zills, Fabian
    Schaefer, Moritz Rene
    Segreto, Nico
    Kaestner, Johannes
    Holm, Christian
    Tovey, Samuel
    JOURNAL OF PHYSICAL CHEMISTRY B, 2024, 128 (15): : 3662 - 3676
  • [26] Proton Transport in Perfluorinated Ionomer Simulated by Machine-Learned Interatomic Potential
    Jinnouchi, Ryosuke
    Minami, Saori
    Karsai, Ferenc
    Verdi, Carla
    Kresse, Georg
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2023, 14 (14): : 3581 - 3588
  • [27] A machine-learned interatomic potential for silica and its relation to empirical models
    Linus C. Erhard
    Jochen Rohrer
    Karsten Albe
    Volker L. Deringer
    npj Computational Materials, 8
  • [28] Experimentally Driven Automated Machine-Learned Interatomic Potential for a Refractory Oxide
    Sivaraman, Ganesh
    Gallington, Leighanne
    Krishnamoorthy, Anand Narayanan
    Stan, Marius
    Csanyi, Gabor
    Vazquez-Mayagoitia, Alvaro
    Benmore, Chris J.
    PHYSICAL REVIEW LETTERS, 2021, 126 (15)
  • [29] A machine-learned interatomic potential for silica and its relation to empirical models
    Erhard, Linus C.
    Rohrer, Jochen
    Albe, Karsten
    Deringer, Volker L.
    NPJ COMPUTATIONAL MATERIALS, 2022, 8 (01)
  • [30] Thawed Gaussian Wavepacket Dynamics with Δ-Machine-Learned Potentials
    Gherib, Rami
    Ryabinkin, Ilya G.
    Genin, Scott N.
    JOURNAL OF PHYSICAL CHEMISTRY A, 2024, 128 (42): : 9287 - 9301