Dynamical criteria for rogue waves in nonlinear Schrodinger models

被引:33
作者
Calini, Annalisa [1 ,2 ]
Schober, Constance M. [3 ]
机构
[1] Coll Charleston, Dept Math, Charleston, SC 29424 USA
[2] Natl Sci Fdn, Arlington, VA 22230 USA
[3] Univ Cent Florida, Dept Math, Orlando, FL 32816 USA
基金
美国国家科学基金会;
关键词
MODULATIONAL INSTABILITY; EQUATION;
D O I
10.1088/0951-7715/25/12/R99
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate rogue waves in deep water in the framework of the nonlinear Schrodinger (NLS) and Dysthe equations. Amongst the homoclinic orbits of unstable NLS Stokes waves, we seek good candidates to model actual rogue waves. In this paper we propose two selection criteria: stability under perturbations of initial data, and persistence under perturbations of the NLS model. We find that requiring stability selects homoclinic orbits of maximal dimension. Persistence under (a particular) perturbation selects a homoclinic orbit of maximal dimension all of whose spatial modes are coalesced. These results suggest that more realistic sea states, described by JONSWAP power spectra, may be analyzed in terms of proximity to NLS homoclinic data. In fact, using the NLS spectral theory, we find that rogue wave events in random oceanic sea states are well predicted by proximity to homoclinic data of the NLS equation.
引用
收藏
页码:R99 / R116
页数:18
相关论文
共 24 条
[1]  
ABLOWITZ MJ, 1974, STUD APPL MATH, V53, P249
[2]   Modulated periodic Stokes waves in deep water [J].
Ablowitz, MJ ;
Hammack, J ;
Henderson, D ;
Schober, CM .
PHYSICAL REVIEW LETTERS, 2000, 84 (05) :887-890
[3]   Long-time dynamics of the modulational instability of deep water waves [J].
Ablowitz, MJ ;
Hammack, J ;
Henderson, D ;
Schober, CM .
PHYSICA D, 2001, 152 :416-433
[4]   Rogue waves and rational solutions of the nonlinear Schroumldinger equation [J].
Akhmediev, Nail ;
Ankiewicz, Adrian ;
Soto-Crespo, J. M. .
PHYSICAL REVIEW E, 2009, 80 (02)
[5]   MODULATION INSTABILITY AND PERIODIC-SOLUTIONS OF THE NONLINEAR SCHRODINGER-EQUATION [J].
AKHMEDIEV, NN ;
KORNEEV, VI .
THEORETICAL AND MATHEMATICAL PHYSICS, 1986, 69 (02) :1089-1093
[6]   Homoclinic chaos increases the likelihood of rogue wave formation [J].
Calini, A ;
Schober, CM .
PHYSICS LETTERS A, 2002, 298 (5-6) :335-349
[7]   Note on breather type solutions of the NLS as models for freak-waves [J].
Dysthe, KB ;
Trulsen, K .
PHYSICA SCRIPTA, 1999, T82 :48-52
[8]   NOTE ON A MODIFICATION TO THE NON-LINEAR SCHRODINGER-EQUATION FOR APPLICATION TO DEEP-WATER WAVES [J].
DYSTHE, KB .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1979, 369 (1736) :105-114
[9]   GEOMETRY OF THE MODULATIONAL INSTABILITY .3. HOMOCLINIC ORBITS FOR THE PERIODIC SINE-GORDON EQUATION [J].
ERCOLANI, N ;
FOREST, MG ;
MCLAUGHLIN, DW .
PHYSICA D-NONLINEAR PHENOMENA, 1990, 43 (2-3) :349-384
[10]  
Guckenheimer J., 1983, APPL MATH SCI SERIES, V42