DFT investigation of the influence of ordered vacancies on elastic and magnetic properties of graphene and graphene-like SiC and BN structures

被引:28
作者
Fedorov, A. S. [1 ]
Popov, Z. I. [1 ]
Fedorov, D. A. [1 ]
Eliseeva, N. S. [2 ]
Serjantova, M. V. [2 ]
Kuzubov, A. A. [2 ]
机构
[1] RAS, Siberian Branch, Kirensky Inst Phys, Krasnoyarsk 660036, Russia
[2] Siberian Fed Univ, Krasnoyarsk 660028, Russia
来源
PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS | 2012年 / 249卷 / 12期
关键词
boron nitride; carbon silicide; elastic properties; graphene; magnetic properties; vacancies; WALLED CARBON NANOTUBES; INITIO MOLECULAR-DYNAMICS; AB-INITIO; DEFECTS; STATE; MONOLAYER; POINTS;
D O I
10.1002/pssb.201200105
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
Influence of ordered monovacancies on elastic properties of graphene is theoretically investigated by density functional theory (DFT) calculations. Inverse linear dependence of the graphene Young's modulus on the concentration of vacancies has been revealed and migration rate of the vacancies has been calculated as a function of applied strain. It is shown that the migration rate can be controlled by applying various strains or temperatures. The influence of ordered monovacancies on magnetic properties of graphene as well as graphene-like hexagonal carbon silicide (2D-SiC) and the boron nitride (h-BN) structures is investigated. It is established that the presence of vacancies in all systems yields the appearance of local magnetic moment. However, in 2D-SiC structure the magnetic moment occurs only in the case of a Si vacancy. Influence of the distance between vacancies on the ferromagnetic or anti-ferromagnetic ordering for all structures is established. (C) 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
引用
收藏
页码:2549 / 2552
页数:4
相关论文
共 32 条
[1]   Surface reconstructions and dimensional changes in single-walled carbon nanotubes [J].
Ajayan, PM ;
Ravikumar, V ;
Charlier, JC .
PHYSICAL REVIEW LETTERS, 1998, 81 (07) :1437-1440
[2]   Electronic structure of defects in a boron nitride monolayer [J].
Azevedo, S. ;
Kaschny, J. R. ;
de Castilho, C. M. C. ;
Mota, F. de Brito .
EUROPEAN PHYSICAL JOURNAL B, 2009, 67 (04) :507-512
[3]   The electronic properties of graphene [J].
Castro Neto, A. H. ;
Guinea, F. ;
Peres, N. M. R. ;
Novoselov, K. S. ;
Geim, A. K. .
REVIEWS OF MODERN PHYSICS, 2009, 81 (01) :109-162
[4]   Room-temperature ferromagnetism in graphite driven by two-dimensional networks of point defects [J].
Cervenka, J. ;
Katsnelson, M. I. ;
Flipse, C. F. J. .
NATURE PHYSICS, 2009, 5 (11) :840-844
[5]  
Chen JH, 2011, NAT PHYS, V7, P535, DOI [10.1038/nphys1962, 10.1038/NPHYS1962]
[6]   Structure and energetics of the vacancy in graphite [J].
El-Barbary, AA ;
Telling, RH ;
Ewels, CP ;
Heggie, MI ;
Briddon, PR .
PHYSICAL REVIEW B, 2003, 68 (14)
[7]   Induced magnetic ordering by proton irradiation in graphite -: art. no. 227201 [J].
Esquinazi, P ;
Spemann, D ;
Höhne, R ;
Setzer, A ;
Han, KH ;
Butz, T .
PHYSICAL REVIEW LETTERS, 2003, 91 (22)
[8]   Ab initio study of hydrogen chemical adsorption on platinum surface/carbon nanotube join system [J].
Fedorov, Alexander S. ;
Sorokin, Pavel B. ;
Kuzubov, Alexander A. .
PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2008, 245 (08) :1546-1551
[9]   Peculiar localized state at zigzag graphite edge [J].
Fujita, M ;
Wakabayashi, K ;
Nakada, K ;
Kusakabe, K .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1996, 65 (07) :1920-1923
[10]   Ferromagnetic spots in graphite produced by proton irradiation [J].
Han, KH ;
Spemann, D ;
Esquinazi, P ;
Höhne, R ;
Riede, V ;
Butz, T .
ADVANCED MATERIALS, 2003, 15 (20) :1719-+