Fuzzy-Rough Set Bireducts for Data Reduction

被引:20
|
作者
Parthalain, Neil Mac [1 ]
Jensen, Richard [1 ]
Diao, Ren [2 ]
机构
[1] Aberystwyth Univ, Dept Comp Sci, Aberystwyth SY23 3DB, Dyfed, Wales
[2] Candela Shenzhen Technol Innovate Co Ltd, Shenzhen 815000, Peoples R China
关键词
Rough sets; Tools; Uncertainty; Feature extraction; Noise measurement; Training data; Dimensionality reduction; Bireducts; feature selection (FS); fuzzy-rough sets; instance selection;
D O I
10.1109/TFUZZ.2019.2921935
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Data reduction is an important step that helps ease the computational intractability for learning techniques when data are large. This is particularly true for the huge datasets that have become commonplace in recent times. The main problem facing both data preprocessors and learning techniques is that data are expanding both in terms of dimensionality and also in terms of the number of data instances. Approaches based on fuzzy-rough sets offer many advantages for both feature selection and classification, particularly for real-valued and noisy data; however, the majority of recent approaches tend to address the task of data reduction in terms of either dimensionality or training data size in isolation. This paper demonstrates how the notion of fuzzy-rough bireducts can be used for the simultaneous reduction of data size and dimensionality. It also shows how bireducts and, therefore, reduced subtables of data can be used not only as a preprocessing tool but also for the learning of compact and robust classifiers. Furthermore, the ideas can also be extended to the unsupervised domain when dealing with unlabeled data. Experimental evaluation of various techniques demonstrate that high levels of simultaneous reduction of both dimensionality and data size can be achieved whilst maintaining robust performance.
引用
收藏
页码:1840 / 1850
页数:11
相关论文
共 50 条
  • [31] MapReduce based parallel fuzzy-rough attribute reduction using discernibility matrix
    Pandu Sowkuntla
    P. S. V. S. Sai Prasad
    Applied Intelligence, 2022, 52 : 154 - 173
  • [32] Fuzzy decision tree based on fuzzy-rough technique
    Jun-hai Zhai
    Soft Computing, 2011, 15 : 1087 - 1096
  • [33] MapReduce based parallel fuzzy-rough attribute reduction using discernibility matrix
    Sowkuntla, Pandu
    Prasad, P. S. V. S. Sai
    APPLIED INTELLIGENCE, 2022, 52 (01) : 154 - 173
  • [34] Fuzzy decision tree based on fuzzy-rough technique
    Zhai, Jun-hai
    SOFT COMPUTING, 2011, 15 (06) : 1087 - 1096
  • [35] Fuzzy-rough attribute reduction via mutual information with an application to cancer classification
    Xu, F. F.
    Miao, D. Q.
    Wei, L.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2009, 57 (06) : 1010 - 1017
  • [36] Printed Thai character recognition using fuzzy-rough sets
    Kasemsiri, W
    Kimpan, C
    IEEE REGION 10 INTERNATIONAL CONFERENCE ON ELECTRICAL AND ELECTRONIC TECHNOLOGY, VOLS 1 AND 2, 2001, : 326 - 330
  • [37] Fuzzy-Rough Simultaneous Attribute Selection and Feature Extraction Algorithm
    Maji, Pradipta
    Garai, Partha
    IEEE TRANSACTIONS ON CYBERNETICS, 2013, 43 (04) : 1166 - 1177
  • [38] Feature Selection With Fuzzy-Rough Minimum Classification Error Criterion
    Wang, Changzhong
    Qian, Yuhua
    Ding, Weiping
    Fan, Xiaodong
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2022, 30 (08) : 2930 - 2942
  • [39] On fuzzy-rough sets approach to feature selection
    Bhatt, RB
    Gopal, M
    PATTERN RECOGNITION LETTERS, 2005, 26 (07) : 965 - 975
  • [40] Dynamic Feature Selection with Fuzzy-Rough Sets
    Diao, Ren
    Mac Parthalain, Neil
    Shen, Qiang
    2013 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ - IEEE 2013), 2013,